
Formal validation of HCI user tasks

Yamine AIT AMEUR, Mickael BARON and Patrick GIRARD
Laboratoire d’Informatique Scientifique et Industrielle

ENSMA-University of Poitiers
BP 40109, 86961 Futuroscope Cedex, France

Email: {yamine, baron, girard}@ensma.fr

Abstract— Our work focuses on the use of formal
techniques in order to increase the quality of HCI software
and of all the processes resulting from the development,
verification, design and validation activities. This paper
shows how the B formal technique can be used for user
tasks modelling and validation. A trace based semantics
is used to describe either the HCI or the user tasks. Each
task is modelled by a sequence of fired events. Each event
is defined in the abstract specification and design of the
HCI system.

Index Terms— Human Computer Interaction, formal
methods, B method, proof by refinement, interaction
properties verification and validation, task modelling and
validation, software architecture.

I. I NTRODUCTION

This paper starts from the two following observations:

- the use of formal methods for software develop-
ment, verification, validation and maintenance is
being widely accepted in the software engineering
area and particularly in human computer interaction
(HCI) software,

- the development of the HCI part of a given software
has considerably increased in the last twenty years.
In several cases, this part can reach fifty per cent of
a software development.

Our work focuses on the use of formal techniques
in order to increase the quality of HCI software and
of all the processes resulting from the development,
verification, design and validation activities. In past
workshops and conferences, we presented our approach
through papers dealing with formal specifications of HCI
software [1] formal verification of HCI software [2],
test based validation of existing applications [3] and
refinement from formal specifications to ADA code [4].
This paper addresses another topic not tackled yet by
our approach: design and formal validation of formal
specifications with respect to informal requirements. This
work completes the whole development process of a HCI
software [5][2][3] [4]. Indeed, our approach uses the B

formal technique for representing, verifying and refining
specifications (see figure 1).

This paper adresses the problem of validation for HCI
developments. In general, the development of HCI is
concerned by two important interleaving phases.

1) A design phasewhich allows to produce the code
implementing the suited HCI and its link with the
functional core (heart of the application). In this
phase, architectural notations, verification, valida-
tion, specification, refinement and programming
techniques are used by HCI developers.

2) A task validation phasewhich consists in validat-
ing user needs. This phase is not well mastered by
HCI designers since most of these validations are
issued from non computer scientists like psychol-
ogists and ergonomists. A set of tasks is described
at the requirement analysis phase and shall be
supported by the final HCI product.

Infor mal
R equirem ents

Semi-formal
N otation & Sce nar ios

Formal model
for validat ion

& Form al Scenarios
Formal

Specification
& Form al
Scenarios

Iteration on
specifications

B uilding the
validation model

Iteration on
R equirem ents

A nalysis

E xtraction

D evelopm ent
and refinement

Fig. 1. A generic approach for requirement engineering.

Our concern is related to the second point. We claim
that it is possible to validate user tasks at the specifica-
tion and design phase. Moreover, we claim that formal
specification and verification techniques allow to perform
user tasks validations.

This paper is structured as follows. Next section
presents a brief overview of the semi-formal notations
and of the formal techniques used in HCI engineering.
Section 3 outlines our approach for formal HCI design
and section 4 presents our approach for user tasks
validation. Then, an example showing how this approach
works is detailed in section 5. Finally we conclude and
give an overview of our future work.

Notice that this paper is shortened in order to be
contained in 7 pages. More information can be obtained
from the authors and/or in its long version.

II. D EVELOPMENT OFHCI SOFTWARE

Like for other areas of software engineering, HCI area
has its own notations, techniques and methods. This
section, outlines briefly these elements and fixes the
context of our work.

A. Notation for design and validation of HCI.

Several semi-formal notations and models have been
defined in the HCI area. These models are issued from
several different communities already mentioned like er-
gonomy and psychology. These notations have followed
the same evolutions as for software engineering. They
are divided into two main categories: design notations
and task description notations.

1) Design and architectural notations:They allow to
express the static structure of the software implementing
the system. All the architecture and design models in
HCI separate the design of the HCI from the design of
the functional core of the application for whom the inter-
face is defined. The Seeheim model [6] is an architecture
model with three modules: presentation, dialog control
and the interface (usually an API) with the application
modules. The PAC [7] model (Presentation, Abstraction
and Control) is a decomposition of the Seeheim model
since it contains several small Seeheim models that
interact with each other. The Arch [8] model integrates
the whole application from the toolkit to the functional
core of the application. It is the most complete model.

Other design models have been suggested, we do not
review them in this paper. Finally, we have used the
ARCH model for our developments.

2) User tasks notations:They allow to describe the
user needs in terms of usability of an HCI. They are
usually issued from non computer scientists (ergonomy
and psychology for example). The majority of these
notations are user centered. They support the definition
of user task by a sequence of actions to be performed
by the user. Approaches like MAD [9], HTA [10], UAN

[11] support notations which decompose a task in a tree
where the basic actions are defined in the leaves of
the obtained tree. Other notations like CTT [12] define
a formal language allowing to describe a set of tasks.
However, these notations do not have formal semantics
and therefore they cannot be checked on the current HCI
design.

3) Properties in HCI: Properties of HCI are those
commonly described for interactive systems in general
like safety and fairness more those properties related to
usability of the HCI like reachability and insistance. In
the HCI development area, two categories of properties
have been distinguished by several authors [13] [14].

• Validation propertiescharacterize the behavior of
the HCI suited by the user (completeness, flexibility,
task achievement, and so on).

• Robustness propertiesare related to the reliability
of the HCI in particular and of the system in general
(observability, insistance and honesty).

B. Need of formalisation

The different models and notations we outlined above
do not give an enough formal representation to allow
the validation and verification of the HCI design with
respect to given properties and user tasks. Verification
and validation are reported to the testing phase when
all the software development is completed. Representing
both design and tasks will permit such verification and
validation.

III. F ORMAL DEVELOPMENT OF HCI

Several formal techniques have been applied in the
development of HCI software. Among the several used
formal description techniques in software engineering,
model oriented approaches play a major role in the HCI
area. These methods are based on the description of the
model by a set of variables. These variables are modified
by the operations and events of the model. Generally,
these techniques are divided into two categories: au-
tomatic proving and proof systems. Both of these two
techniques have been applied to interactive systems [15].

The first category allows automatic proofs (model
checking). It is based on the evaluation of logical prop-
erties on the state transition system which is obtained
from the evolving variables. Among these techniques,
we can find temporal logics, Petri nets and so on. In
the area of interactive systems, these techniques are
assumed to have been used first in formal verification
of interactive systems [15]. For example, [1] verifies
user interfaces with SMV (Symbolic Model Verfier)

using CTL (Computational Tree Logic), while [16] uses
LOTOS to write interactors specifications, and analyses
translated finite state machines using ACTL (Action-
based Temporal Logic). [17] develops a new temporal
logic based formalism, named XTL (eXtended Temporal
Logic), to address singularities in interactive specifica-
tion. Model checking is also used by [18] who model
user and system by the way of object-oriented Petri nets
ICO [18]. More recently, [19] used the Lustre language
for the automatic validation of user interface systems.

The second category is based on proof systems where
the model is described by variables, operations, events,
temporal properties and invariants. The operations must
preserve these invariants and a set of other properties
(preconditions and/or post conditions). To ensure the
correctness of these specifications a set of proof obli-
gations are generated and shall be proved. According to
its implementation, the proof system can achieve some
of the proofs automatically. Among these techniques, we
can find Z, based on set theory [20], VDM [21], based
on preconditions and postconditions calculus [21]; [22]
[23], and B, based on the weakest precondition calculus
[24] [25]. In the HCI field VDM and Z have been used
for defining atomic structures like interactors [26] [27],
and Z and Object-Z are now used more extensively [28],
HOL (a Higher Order Logic Theorem Prover) has been
used in the verification of User Interface specifications
[29][30].

Despite this large use of methods, the usability of
formal methods in HCI is always under questions.
Ben Shneiderman [31] ensures that currently, formal
models ”are beneficial for only small components”,
and identifies ”scalable formal methods and automatic
checking of user-interface features” as a major point
for researcher’s agenda. Topics such as adequate tool
support, cost/benefits ratio, and scalability for formal
methods in interactive design are particularly relevant.

IV. FORMAL DESIGN OF HCI USING THE B METHOD

Our approach contributes towards the use of formal
techniques for describing, designing and proving inter-
active systems. We showed that formal methods are
scalable to complex HCI applications.

We use the B formal method to show that it is
possible to handle a complete interactive software
formal development. This approach allows specifying,
verifying and refining the formal B specifications
and design. Particularly, programs written in Ada and
Tcl-Tk have been generated within this technique,
demonstrating that our approach may be used in real

size systems [5].

A. The B approach

We use the B method [24] and its event based def-
inition [32]. This method allows to describe various
kinds of systems like distributed, parallel, multi-modal,
reactive, interactive systems and so on.

A B model is composed of a set of ”atomic” events
which are described by particular generalized substitu-
tions (assignment, ANY, BEGIN and SELECT). Events
modify the state of the specified system. This state is
defined by a set of typed variables which may evolve
when events are fired.

For the purpose of this paper, we will
only use the SELECT substitution Evt =
SELECT P THEN S END; The event Evt
is fired andS is executed whenP is true. Each event
Evt is fired if and only the guardP associated to this
event is true.

Moreover, a set of properties like invariants, liveness,
safety and reachability properties may be associated to
each B model. These properties allow to formally ensure
the correctness and the validation of the behavior of the
described system. They are proved during the develop-
ment thanks to the embedded proof system associated to
B and to theAtelier B tool [33].

Finally, B models can be refined into other B models
which can be enriched by new events and new properties.
The refinement process leads a developer to the final HCI
design after finite refinement steps.

B. Design and architecture with B

In our case, we use the set of events to define a
transition system that allows to represent the dialog
controller of the HCI we want to specify. The events
of the dialog controller define an automaton which
describes the interactive system. Each event is guarded
by a strong predicate defining a guard which shall be
true in order to fire the corresponding event. Moreover,
it ensures that the associated operation (in theTHEN
part) can be executed. The underlying semantics is a
trace based semantics where the events are interleaved.
Thus, there is no parallel firing of events (asynchronous
modelling), and when the ”time is stretched” enough, the
events can be considered to be fired in a sequential way.

In the case, of an interactive application described
by several systems, our approach uses the refinement
technique to introduce the events of the composed au-
tomata. Each system is then described progressively by
refinements in an incremental way.

The different events defined during the specification
and the design phases are gathered into different B
models. These models obey themselves to architectural
notations issued from the HCI engineering practice. In
our case, as applied below, the ARCH architectural
model will be used to describe the architecture of our
case study.

C. Task validation with B

A Task is described by an initial state and a final
state. It is decomposed in asequenceof several subtasks
which are themselves decomposed in othersequencesof
subtasks and so on (see figure 2). This process is applied
until the tasks cannot be decomposed i.e. the atomic
events belonging to the dialog controller are reached in
the leaves of the decomposition tree. From a specification
point of view, this decomposition is represented by a set
of refinement steps. A task is refined into a sequence of
basic events which lead from the initial state to the final
state. The only allowed control operator is thesequence
”;” .

T1

T3

T8

T2

T4 T5 T6 T7

T10 T11Evt 1 Evt 2 Evt 1

Evt 3

Evt 5

Evt 4

Fig. 2. Task decomposition into subtasks.

The higher level task is represented in B through a B
model or an abstract machine. We use B to perform the
decomposition of a given task into a set of ordered (by
sequence) subtasks. The refinement technique consists
in introducing thesequenceand the subtasks. The proof
obligations related to refinement, embedded in the B
technique, ensure that this decomposition is correct. Thus
our claim is that task validation may be performed by
refinement.

On figure 2, a decomposition of taskT1 into an
ordered set of subtasksT2 and T3 is shown. Moreover,
the whole decomposition is given by:

T1 = T2; T3

T2 = T4; T5; T6

T3 = T7; T8

T8 = T10; T11

T1 = T4; T5; T6; T7;T8

T1 = Evt1; Evt2;Evt1; Evt5; Evt3;Evt4

Evti are ”atomic” events from the dialog controller and
sequence is the only allowed task composition operator.

The refinement preserves all the properties of the
initial task T1. When the basic events are reached by
the refinement, the validation process is completed.

Two validation aspects are addressed at this point:
- first, the final sequence of events shows that there

exists a sequence of basic elements implementing
the upper abstract task.This is a task validation
aspect.

- Second, if one of the basic events is not present
and/or some proof obligation related to the basic
events cannot be proved, in the B models of the
design, then, we can assert that some of basic events
are missing and/or wrongly specified and therefore,
the design shall be updated and/or completed.This
is a design and architectural decomposition valida-
tion aspect.

This approach allowed us to validate a full task model
since each task can be, at the end, decomposed into an
ordered sequence of basic events.

V. A PPLICATION OF OUR APPROACH

This section applies our approach, previously de-
scribed, on a simple but pedagogical case study involving
all the relevant parts encountered in a WIMP (Windows,
Icons, Mouse and Pointers) like HCI design.

A. The case study

The franc/euro exchange application is an application
that makes conversions from French Francs to Euros
and vice-versa. The user enters the value he/she wants
to convert, he/she chooses the the target currency of
conversion and makes the conversion, and last, user reads
the result.

Figure 3 shows a screenshot of this application we
have developed with Java/Swing.

Fig. 3. Interface of franc/euro exchange application.

B. Design and architecture with B

The WIMP applications can be described by the
ARCH model. This model gives a graphical represen-
tation of abstract machines and B models relations,
conforming to interactive needs. Several B models and
machines are built to correspond withDomain, Do-
main Adapter, Dialog Controller , Presentation and
Toolkit (ARCH model elements), (see figure 4). Thus,
the ARCH model explicitly includes graphical toolkits,
which are required for most HCI developments. Using
this framework, object oriented criteria were used to
build B models, and we exploited the EXTENDS clause
to ensure the consistency between these machines.

Domain

DomainAdapter

Presentation

Toolkit

Dialog

BWidget
BButtonWidget

BIntFieldWidget

BFrameWidget

BFrameCFE

BIntFieldConvert
BIntFieldConverted

BButtonFranc
BButtonEuro

BInterfaceCFE

BControler

BConvert

BKeyboard

BMouse

BControleurRef1

Extends

Rafinement

Fig. 4. Architectural ARCH-like decomposition of franc/euro
exchange application.

Our design consists of sixteen B models (not com-
pletely represented on the figure 4). These machines
contain the specification corresponding to:

- Toolkit: This module gathers a set of B models
(BButtonWidget, BFrameWidget, BIntFieldWidget,
BScreenWidgetand BWidget) which describe the
basic components.BKeyboardand BMousedenote
the machine related to the interaction part. All these
B models have been specified applying reverse-
engineering rules from JAVA/Swing toolkit.

- Presentation: BInterfaceCFEspecifies the interac-
tive interface by gathering theBButtonEuro, BBut-
tonFranc, BIntFieldConvert, BIntFieldConverted,
BFrameCFEandBSceenmachines.

- Domain and Domain Adapter: BConvert is a
machine related to the domain and domain adapter.
It manages the helpful operations which compute
exchange values.

- Dialog Controller: This module is an event based
model defined applying the event based definition

of B previously addressed. The the dialog con-
troller describes a transition system which defines
the franc/euro exchange system.BControlerand its
refinementBControlerRef1gather the whole models
into a common one in order to describe the whole
application of the exchange case study. For the pur-
pose of this paper, we limited the dialog controller
to the main events likeInputV alueToConvert
(which input a real number),V alidateInputV alue
(which sends the input to the converter),clickEF
(which chooses the target currency from Euros to
French Francs),DisplayConvertedV alue (which
displays the converted value) etc. Several other
events are defined in the dialog controller, they are
reported here. All of these events are described in
the BController model. Only theclickEF event is
described.

MODEL BController
· · ·

EVENTS
clickEF =

SELECT
b mouse y ∈ b frame y · · · ∧
b buttonEF state = unpressed ∧
b mouse state = clicked ∧
· · ·

THEN
· · · Event Body

END
· · ·

The guard of theclickEF event checks that the
mouse position is located on the button of conver-
sion from French Francs to Euros, the button state
is unpressed, and mouse state is clicked. So, if this
guard is respected, event body is executed.

C. Task validation with B

Two tasks are validated from this case study: task of
conversion from French Francs to Euros (francsToEu-
rosTask) and conversely task of conversion from Euros
to French Francs (eurosToFrancsTask). One B abstract
machine (it is the higher level task) describes two
operations. These operations calls one operation (opT1

andopT2), which describes the task postcondition.

MACHINE TaskModel
EXTENDS BController

· · ·
OPERATIONS
eurosToFrancsTask =

PRE
· · · Task Precondition

THEN
opT1

END;
francsToEurosTask =

PRE
· · · Task Precondition

THEN
opT2

END
END.

The refinement of these two operations leads to a
sequence of basic events (from the dialog controller).
The refinement steps introduce thesequentialoperator.

REFINEMENT TaskModelRef1
EXTENDS BController
REFINES TaskModel

· · ·
OPERATIONS
eurosToFrancsTask =

PRE
· · · Task Precondition

THEN
InputV alueToConvert;
V alidateInputV alue;
clickEF ;
DisplayConvertedV alue

END;
francsToEurosTask =

PRE
· · · Task Precondition

THEN
· · ·
END

END.

For example, the task of conversion from francs to
euros is described by:input value to convertevent,
validate input valueevent (by pressing the enter key
) and francs to euros conversionevent (the display of
converted value being done in the conversion event).

Proof of properties on the taskseurosToFrancsTasks
and francsToEurosTaskswere expressed and checked
thanks to invariants and assertionsclauses of the B

method. Among these properties, we checked that the
conversion is correct (according to the conversion rate)
and that the conversion is done only one since the
mouse is clicked only once. The insistance property was
checked as well. The appearing colors (not addressed
in this paper) show the successfulness of the conversion
task.

VI. CONCLUSION

The approach we have presented is based on the use of
formal techniques for the development, verification and
validation of HCI software. We have kept the traditional
notations used by the designers and we have proposed
a formalisation of such notations. One of the major
advantages of our approach is that no change in the
design is introduced. There is no fundamental change in
the development process, but our contribution provides
formal techniques which give a formal assistance to the
HCI developers.

The formal technique we use is the proof based
technique B. We have been capable to represent and
verify the whole development of a HCI and its user
tasks. Verification and validation are performed using
proof techniques and therefore they avoid the combina-
torial explosion problem devoted to most of the model
checking techniques. The traces representing a task are
obtained after a set of refinement steps. Task validation
consists in building explicitly the user task. Therefore,
this approach needs a user expertise and knowledge of
the dialog controller elements. This approach is qualified
asexplicit.

In order to avoid the explicit description of the tasks,
we are currently working on an implicit approach which
consists in describing a task at a more abstract level using
a task description language. This approach represents
an upper layer of the one presented in this paper. We
use a language, namely CTT, to represent tasks. The
task model expressed by B models refinements (like the
one presented in this paper) is generated form a CTT
description. This approach allows to handle concurrency,
disabling, interruption and iterative tasks which were not
supported by the approach defined in this paper.

REFERENCES

[1] G. Abowd, H.-M. Wang, and A. Monk, “A Formal Tech-
nique for Automated Dialogue Development,” inProceedings
of DIS’95, G. Olsan and S. Schuon, Eds., 1995, pp. 219–226.

[2] Y. Ait-Ameur, P. Girard, and F. Jambon, “Using the B Formal
Approach for Incremental Specification Design of Interac-
tive Systems,” inIFIP TC2/WG2.7 Engineering for Human-
Computer Interaction, S. Chatty and P. Dewan, Eds. Kluwer
Academic Publishers, 1998, pp. 91–110.

[3] Y. Ait-Ameur, B. Bréhoĺee, L. Guittet, F. Jambon, and P. Girard,
“Formal Verification and Validation of Interactive Systems
Specifications,” LISI/ENSMA, Tech. Rep., March 2000.

[4] Y. Ait-Ameur and P. Girard, “Specification, Design, Refinement
and Implementation of Interactive Systems: the B Method,”
LISI/ENSMA, Tech. Rep., March 2001.

[5] Y. At-Ameur, P. Girard, and F. Jambon, “A uniform approach
for the specification and design of interactive systems: the b
method,” in Eurographics Workshop on Design, Specification,
and Verification of Interactive Systems (DSV-IS’98),
P. Markopoulos and P. Johnson, Eds., vol. Proceedings,
Abingdon, UK, 1998, pp. 333–352. [Online]. Available:
http://www.lisi.ensma.fr/ftp/pub/documents/papers/1998/1998-
dsvis-yaapg fj.pdf

[6] G. E. Pfaff, Ed.,User Interface Management Systems, Proceed-
ings of the Workshop on User Interface Management Systems
held in Seeheim, ser. Eurographic Seminars. Berlin: Springer-
Verlag, 1985.

[7] J. Coutaz, “PAC an Implementation Model for Dialogue De-
sign,” in Proceedings of INTERACT. North Holland, 1987, pp.
431–437.

[8] L. Bass, R. Pellegrino, S. Reed, S. Sheppard, and M. Szczur,
“The Arch Model : Seeheim Revisited,” inCHI 91 User
Interface Developper’s Workshop, 1991.

[9] D. L. Scapin and C. Pierret-Golbreich, “Towards a Method for
Task Description : MAD,” inWork with display units. Elsevier
Science Publishers, North-Holland, 1990.

[10] A. Dix, J. Finlay, G. Abowd, and R. Beale,Human-Computer
Interaction. Prentice Hall, 1993.

[11] D. Rix and H. Hartson,Developping User Interfaces: Ensuring
Usability Through Product & Process, ser. Wiley professional
computing. John Wiley & Sons, inc. NY, USA, 1993.

[12] F. Patern,Model-Based Design and Evaluation of Interactive
Applications. Springer, 2001.

[13] A. Dix, J. Finlay, G. Abowd, and R. Beale,Human-Computer
Interaction. Prentice Hall, 1993.

[14] P. Roche, “Mod́elisation et Validation d’Interfaces Homme-
Machine,” Ph.D. dissertation, ENSAE, March 1998.

[15] J. Campos and M. Harrison, “Formally Verifying Interactive
Systems: A Review.” inEurographics Workshop on Design,
Specification, and Verification of Interactive Systems (DSV-
IS’97). Springer Verlag, 1997, pp. 109–124.

[16] F. Paterno and G. Faconti, “On the LOTOS Use to Describe
Graphical Interaction,” inProceedings of HCI, People and
Computer. Cambridge University Press, 1992, pp. 155–173.

[17] P. Brun, “XTL: a Temporal Logic for the Formal De-
velopment of Interactive Systems,” inFormal Methods for
Human-Computer Interaction, P. Palanque and F. Paterno, Eds.
Springer-Verlag, 1997, pp. 121–139.

[18] P. Palanque, R. Bastide, and V. Sengs, “Validating Interactive
System Design Through the Verification of Formal Task and
System Models,” inIFIP TC2/WG2.7 Engineering for Human-
Computer Interaction, 1995, pp. 189–212.

[19] B. D’Ausbourg, “Using Model Checking for the Automatic Val-
idation of User Interface Systems,” inEurographics Workshop
on Design, Specification, and Verification of Interactive Systems
(DSV-IS’98). Springer Verlag, 1998, pp. 242–260.

[20] J. M. Spivey,The Z notation: A Reference Manual. Prentice–
Hall Int., 1988.

[21] D. Bjorner, “VDM a Formal Method at Work,” inProc. of VDM
Europe Symposium’87, S.-V. LNCS, Ed., 1987.

[22] C. Hoare, “An Axiomatic Basis for Computer Programming,”
CACM, vol. 12, no. 10, pp. 576–583, 1969.

[23] C. Hoare, I. Hayes, H. Jifeng, C. Morgan, A. Sanders,
I. Sorensen, J. Spivey, and B. Sufrin, “Laws of Programming,”
CACM, vol. 30, no. 8, 1987.

[24] J. Abrial, The B Book. Assigning Programs to Meanings.
Cambridge University Press, 1996.

[25] E. Dijkstra, in A Discipline of Programming. Prentice-Hall
Englewood Cliffs, 1976.

[26] D. Duke and M. D. Harrison, “Abstract Interaction Objects,” in
Proceedings of Eurographics conference and computer graphics
forum, vol. 12, no. 3, 1993, pp. 25–36.

[27] D. Duke and M. Harrison, “Towards a Theory of Interactors,”
Amodeus Esprit Basic Research Project 7040, System Mod-
elling/WP6, Tech. Rep., 1993.

[28] A. Hussey and D. Carrington, “Specifying a Web Browser
Interface Using Object-Z,” inFormal Methods for Human-
Computer Interaction. Springer Verlag, 1997, pp. 157–174.

[29] P. Bumbulis, P. Alencar, D. Cowan, and C. Lucena, “Combining
Formal Techniques and Prototyping in User Interface Construc-
tion and Verification,” in2nd Workshop on Design, Specification
and Verification of Interactive Systems DSVIS, P. Palanque and
R. Bastide, Eds. Springer Verlag, 1995, pp. 174–192.

[30] ——, “Validating Properties of Component-Based Graphical
User Interfaces,” inEurographics Workshop on Design, Spec-
ification, and Verification of Interactive Systems (DSV-IS’96).
Springer Verlag, 1996, pp. 347–365.

[31] B. Shneiderman,Designing the User Interface. Addison
Wesley, 1998.

[32] J.-R. Abrial, “Extending b without changing it (for develop-
ing distributed systems),” inFirst B Conference, Putting Into
Pratice Methods and Tools for Information System Design,
H. Habrias, Ed., Nantes, France, 1996, p. 21.

[33] ClearSy, “Atelier b - version 3.5,” 1997. [Online]. Available:
http://www.atelierb.societe.com/

