6th Int. Conference on Industrial Engineering and Production Management (IEPM’03), Porto (Portugal), may 26-28 2003.

On-line scheduling on a single batching machine
to minimize the makespan

Pascal Richard, Frédéric Ridouard

Laboratoire d’Informatique Scientifique et Industrielle
ENSMA, BP 40109 Téléport 2

F-86961 Futuroscope
{pascal.richard,frederic.ridouard} @ensma.fr

Patrick Martineau

Laboratoire d’Informatique - Université de Tours
Ecole Polytechnique Universitaire

Département Informatique

64 av. Jean Portalis

F-37200 Tours

pmartineau@univ-tours.fr

Abstract. We present an on-line algorithm to minimize the makespan on a single batch process-
ing machine. We consider a parallel batching machine that can process up to b jobs simultaneously.
Jobs in the same batch complete at the same time. Such a model of a batch processing machine
has been motivated by burn-in ovens in final testing stage of semiconductor manufacturing. We
deal with the on-line scheduling problem when jobs arrive over time. We consider a set of inde-
pendent jobs. Their number is not known in advance. Each job is available at its release date
and its processing requirement is not known in advance. Deterministic algorithms that do not
insert idle-times in the schedule cannot be better than 2-competitive and a simple rule based on
LPT achieved this bound (Liu and Yu (2000)). If we are allowed to postpone start of jobs, then
we prove that a general lower bound is equal to 1.618 for bounded and unbounded batch sizes.
We then present deterministic algorithm that is a best possible for the problem with unbounded
batch size and equal processing times, as well as for the problem with unbounded batch size, two
distinct release dates and non equal procesing times (i.e. there cannot exist an on-line algorithm
with a better performance guarantee).

Key words: On-line Scheduling, Batch Processing Machine, Competitive Analysis.

1 Problem Statement

A batching machine (or batch proccessing machine) is a machine that can process up to b jobs
simultaneously. The jobs that are processed together form a batch. Two kinds of batching
machines can be defined: in a serial batching machine the processing time of a batch is equal to
the sum of processing times of jobs belonging to it; in a parallel batching machine, the processing
time of a batch is the maximum of the processing times of jobs belonging to it. A recent survey on
scheduling problems envolving with batching is presented by Potts and Kovalyov (2000). Next,
we only focus on a parallel batching machine. Such a model of a batch processing machine is

motivated by burn-in ovens in final testing stage of semiconductor manufacturing (Uzsoy et al.
(1992); Lee et al. (1992)).

A job J; (j € {1,...n}) has a processing time p; and a release date r;. A job cannot start
before its release date and all jobs in the same batch complete simultaneaously. The completion
time of J; is noted C';. Preemption is not allowed. A scheduling algorithm is said to be conservative
if it is not allowed to postpone the start of an available job.

Single batching machine problems extend classical single machine problems (by setting b = 1).
Minimizing the makespan for serial batching machines is trivial since it is sufficient to schedule
jobs as early as possible (ties are broken arbitrarily). Next, we focus on minimizing the makespan
for parallel batching machines. This problem is noted 1|p — batch|Cyp,q, Brucker (2001) with the
classical three field notation.

In the off-line setting, if the jobs are simultaneously released, the optimal sequence is defined
by taking the b longest jobs as one batch, then take the b longest remaining jobs as another batch,
and so on. This algorithm runs in min{O(nlogn), O(n?/b)} (Brucker et al. (1998)). When jobs
are subjected to non-equal release dates, then the problem 1|p — batch,;|Cyqs is strongly NP-
hard (Brucker et al. (1998)). It remains A/P-hard, but in the ordinary sense, if there are only two
different release dates {0, 7} (Liu and Yu (2000)). A pseudopolynomial time dynamic programming
algorithm is known if there is a finite set of different release dates (Liu and Yu (2000)). The
problem is polynomially solvable if jobs have equal processing times (Ikura and Gimple (1986))
or there is no bound on the batch size Lee and Uzsoy (1999). For the general problem, a Branch
and Bound algorithm and a dynamic programming heuristic have been proposed in Sung and
Choung (2000). Lee and Uzsoy (1999) proposed heuristics and analysed them through numerical
experimentations.

There exist several paradigms in the on-line scheduling theory (Sgall (1998)). Next, we shall
consider that jobs arrive over time. The set of jobs is not a priori known. The characteristics of a
job is known when it arrives in the system. There is no constraint on release dates: they can be
spread out evenly over time, bunched in several burts or come in a single burst.

We shall use competitive analysis to study on-line algorithms (Borodin and R.El-Yaniv (1998)).
This approach compares on-line algorithms to an optimal clairvoyant algorithm. A good adversary
defines instances of problems so that the on-line algorithm achieves its worst-case performance. To
analyse deterministic algorithms, two equivalent adversaries can be used: the off-line or oblivious
adversary defines a sequence of jobs in advance and serves it optimally and the on-line adaptative
adversary that defines the next incoming jobs according to the decisions taken by the on-line
algorithm. An algorithm that minimizes a measure of performance is c-competitive if the value
obtained by the on-line algorithm is less than or equal to ¢ times the optimal value obtained by
a clairvoyant algorithm (up to a constant if there is an infinite set of jobs). We also say that ¢
is the performance guarantee of the on-line algorithm. An algorithm is said competitive if there
exists a constant ¢ so that it is c-competitive. More formally, given an instance I, let A(I) be
the value obtained by the on-line algorithm A and OPT(I) be the value obtained by the optimal
clairvoyant algorithm, then A is c-competitive if there exists a constant ¢ so that:

A(I)

opPT() =° (1)

The competitive ratio c4 of the algorithm A is the worst-case ratio while considering any

instance [:

_ A(I)
A OPT(D ¥

The competitive ratio of an algorithm A is greater than or equal to 1. If ¢4 = 1, then A is an
optimal algorithm.

Liu and Yu (2000) presented a greedy algorithm (i.e. an algorithm that always takes the
best immediate, or local, solution while finding an answer) to solve the single batching machine
scheduling problem. This rule, called H, is stated as follows: Any time when the machine is idle
and some unscheduled jobs are available, schedule the longest available unscheduled jobs as many
as possible as a batch. These authors have proved that the previous rule is 2-competitive, and this
bound is tight for conservative schedule.

Next, we show that a better on-line deterministic algorithm than H can be defined by allowing
inserted idle-times in the schedule. We first show that any deterministic algorithm is at least 1.618-
competitive, and then we propose a deterministic algorithm with a tight performance guarantee
for the problem 1|p — batch,r;, p; = p|Cpmar and also for the problem with unbounded batch size
and two distinct release dates (i.e. jobs come in two bursts).

2 A general lower bound

The best deterministic algorithm that do not insert idle time in the schedule has a performance
guarantee of 2 (Liu and Yu (2000)). Zhang et al. (2001) shown that inserting idle time may
help to improve performance guarantees of on-line algorithms. They defined a lower bound of
the competitive ratio equal to 1.618. Their proof is based on an oblivious adversary. We next
propose another proof based on an on-line adaptative adversary. This result holds for bounded
and unbounded batch size.

Theorem 1 Any deterministic algorithm for scheduling a single batching machine to minimize
the makespan has a competitive ratio of at least # ~ 1.618.

Proof: We use an on-line adaptative adversary that generates b — 1 jobs of length p at time 0.
The on-line algorithm, say A, can decide to schedule these jobs at time S. According to S, the
on-line adversary uses two different strategies:

e 1o job arrives anymore. In this case, the optimal schedule has a makespan of length p,
whereas the algorithm A obtains S + p.

e the adversary generates one more job at time S + ¢ of length p. The adversary schedules all
jobs in the same batch, leading to the makespan of S+ p + €, whereas the on-line algorithm
uses two different batches, leading to a makespan of S + 2p.

By regrouping these two cases, we obtain a competitive ratio c4 that verifies:

(S—l—p S+2p)
c4A > max ;

"S+p+te

The right part of the previous inequality is minimized by setting e = 0 and % = 5;“—4_2;’. This
leads to:

S(8 +p) =p° (4)

—14+v5

5=, If we report this value in equation (3), then we obtain:

As a consequence, S = p

S+p p=4Bip 145
_ == (5)
p P

So, a lower bound of the competitive ratio is 1+T‘/5 ~ 1.618. O

3 Upper Bound for the problem 1|p — batch,r;, p; = p,b = 00|Casz

As presented in the introduction, the problem 1|p — batch,r;,b = 00|Cinee can be solved in poly-
nomial (O(n?)) time by using dynamic programming (Lee and Uzsoy (1999)). A more efficient
implementation of the previously mentioned algorithm has been proposed by Poon and Zhang
(2000) leading to a O(nlogn) algorithm. Thus, when processing times are equal, minimizing
makespan can be solved in polynomial time in the off-line setting (Ikura and Gimple (1986)).

When the machine is idle and a new job arrives, it should be benefit to wait in order to see
if new jobs should arrive in the near future. If a job of length p arrives in the system, we cannot
wait for extra information more that p units of time because otherwise if no new job arrives in
the system, then the on-line algorithm has a competitive ratio greater than 2. It is also easy to
prove that waiting exactly p units of time when a job of length p arrives at an idle-time leads to
a competitive ratio of 2.

We now investigate a generalization of these approaches by leaving the machine idle for an
interval of time that is proportional to the processing time of the incoming job. When a new job of
length p arrives and the machine is idle, then the machine is left idle ap units of time, 0 < o < 1.
We call this new rule aH. This rule extends the rule H by setting a = 0.

Definition 1 aH: Any time when the machine is idle and some unscheduled jobs are available,
let J; be an available job, then the next batch is not scheduled before rj + ap; units of time and
then schedule available unscheduled jobs as many as possible as a batch.

We now prove that aH is a best possible deterministic algorithm when « is set to (—14+/5)/2
for the problem 1|p — batch,ri,p; = p,b = 00|Cpaz- Thus, we assume that jobs have equal
processing times. Such an assumptation usually simplifies the problem in the off-line setting from
the computational complexity point of view (see for instance Baptiste (2000)). Hereafter, we
assume that jobs are indexed in non-decreasing order of their release dates:

1 <jJ=>r; <. (6)

We present three simple results in order to define the worst-case competitive ratio of «H for
the problem 1|p — batch,r;,p; = p,b = 00|Cpqz-

Lemma 1 For any instance I with n jobs of the problem 1|p — batch,r;,p; = p,b = 00|Cpaz, the
optimal makespan is OPT (I) = r,, + p.

Proof: Since p; = p,1 <14 < n, every job J; so that r; < r; can be schedule in the same batch
as J; without increasing the makespan. Thus, the optimal makespan is achieved by batching all
jobs as a single batch that is scheduled at time r, and completes at time r,, + p. O

Lemma 2 Let I be an instance with n jobs of the problem 1|p — batch,r;,p; = p,b = 0|Cpaz,
then J, ends any schedule built-up by aH.

Proof: In a schedule defined by aH, jobs are batched in non-decreasing order of their release
dates since, when a batch is begun, then all already released jobs are scheduled. Thus, J, is
scheduled in the last batch of the schedule. O

Lemma 3 For any instance I of the problem 1|r;, p; = p,b = 00|Ciaz, H completes no job after
2p units of time after its release: F; = C; —r; < 2p.

Proof: Let us consider an arbitrary job J; and let o be the schedule built-up by aH. A block
is defined as a partial schedule without any idle-time. If J starts a block without idle-time in o,
then it cannot start after rp + ap and thus completes by time r + (1 + a)p. As a consequence,
Cr — 1 < 2p, since 0 < a < 1. If J, is scheduled in a block but not in the first position, then the
worst-case flow time F}, is achieved when Ji is released just after the beginning of a batch. This
batch completes at time rp + p — €, then .J; is scheduled in the next batch and thus completes
at time 7 + 2p — €, where € is an arbitrary small number. As a consequence, in both cases:
F,=Cy —r, <2p. O

Theorem 2 aH is 1.618-competitive for the problem 1|p — batch,r;,p; = p,b = 00|Cpax when

a=(—1++5)/2.

Proof: Let us consider an arbitrary instance I of the problem. According to lemma 1, OPT(I) =
rn + p. And according to lemma 2, J, is always scheduled in the last batch. Let A(I) be the
makespan achieved by aH. We consider two cases:

e If the batch B in which J, is scheduled starts after an idle-time, then the latest completion
time of B is:

mazjep(rj + (@ +1)p) =r, + (a+1)p

Thus, A(I) < r, + (o + 1)p, for any instance I. Thus, the worst-case competitive ratio
verifies:
A(I) <™ + (a+1)p
OPT(I) = tntp

< (a+1) (7)

e If B is not the only batch in the last block without idle-time, then according to lemma 3,
for every job Ji is verified: Cy — rp < 2p. Due to lemma 2, J, ends the schedule. Thus
A(I) < rp + 2p. Furthermore, since B is not the first batch in the block that ends the
schedule, then we verifies that r, > ap. Otherwise all jobs are scheduled in a single batch
according to the aH rule. So, the worst-case competitive ratio in this case is:

A(I) <7’n+2p<ap+2p_a+2
OPT(I) — rpn+p ~— ap+p a+l1

(8)

If we regroup both cases, then we have:
A(I) a+2
—— < 1, —— 9
OPTU)—HMXG”*’a+1> (%)

Simple algebra analysis shows that the worst-case value of the above expression is achieved
when:

a+2
1 = 10
ot a+1 (10)
?+a—-1 =0 (11)

So, the positive solution of this equation is o = (—1 + 1/5)/2, leading to the competitive ratio:

A +1:1+\/5

oPT() =

~ 1.618 (12)

O

Zhang et al. (2001) studied the problem with unbounded batch size (even for problems having
non equal processing times). But, they proposed an on-line algorithm that inserts huge interval
of idle times in the schedule. Let U; be the set of available jobs at some time t. Let p; be
the longest job in U;. Then the next batch is not started before time: (1 + a)ry + apg. As a
consequence, even for instances of problems having a huge number of jobs, then no more than
two batches can be scheduled within a continuous block of batches. More precisely, a batch can
be delayed by at most one batch in every schedule. From the practical point of view, inserted
idle-times depend simultaneously on release dates and processing times. In our algorithm, inserted
idle-times only depend on processing times of available jobs. Such a property is quite useful if the
on-line algorithm must deal with large scheduling horizons. Furthermore, our algorithm always
introduce less idle times in the schedule than the algorithm presented by Zhang et al. (2001). But,
we do not know if our algorithm still (1 4+ «)-competitive for the general problem with non-equal
processing times. In the next section, we prove that our rule is still a best possible algorithm for
scheduling problems having two distinct release dates.

4 Problems with two release dates and unbounded batch size

We now consider a special case where every instance has two distinct release dates but we relax
the assumption of equal processing times studied in the previous section. Considering scheduling

problems with two distinct release dates allow to model jobs arriving in two bursts. In this specific
case, we show that aH is still a best possible deterministic algorithm. The offline version of this
problem is obviously solved in polynomial time when batch sizes are not bounded (but if such
a bound exists, then the offline problem is solved in pseudo-polynomial time (Ikura and Gimple
(1986))). To study this problem, we only have to consider two jobs: the longest of the first burst
and the longest of the second burst.

Theorem 3 «H is at best 1.618-competive for minimizing the makespan on a single batching

machine with two release dates. This is achieved for a = 71%‘/5

Proof: Let p; be the longest job belonging to the first burst and py this one related to the second
burst. The worst-case scenario that must deal with aH is defined by the following strategy:
generate a job of length p; at time 0 and another job of length ps at time ap; + €, where € is an
arbitrary small number. The on-line algorithm «H uses 2 batches: the first one for the job of
length p; and the other one for the jobs of length ps. The makespan of the schedule obtained by
aH, say A(I), is:

A(I) = ap1 +p1 +p2 (13)
The optimal off-line algorithm has two possibilities according to the values «, p1, po:
e it schedules jobs in a single batch starting at time ap; +e. The makespan is apy +max(p1, p2).

e it schedules jobs in two batches. The first one is used to schedule the job of length py, and
the second one for the remaining jobs of length po. In that case, the makespan is p; + po.

The former case is useful if p; < po, whereas the latter is useful if p; > po. If we regroup
these two cases, then the optimal makespan is defined by:

OPT(I) = min (p1 + p2; ap1 + max(p1;p2)) (14)
The competitive ratio with parameters a, p1, ps is:

_ A(I) _ pr(a+1) +po
OPT(I) min(p; + po;ap; + max(pi;p2))

cA (15)

Simple arithmetic calculations show that the previous expression is minimized while consider-
ing any instance I for o = _1+‘/5 According to this value of «, the competitive ratio is maximized
for p = p1 = p2. So, we obtain:

(B 12) 345 1+45

~ 1.618 (16)

a

Figure 1 represents the evolution of the competitive ratio that is achieved by aH in function
of a € [0, 1].

2,1

IR e ————_——————(
L8 o S

1,7

competitive ratio

16—

1,5 T T T T

alpha

Figure 1: Competitive ratio of the aH rule for the problem with two release dates.

5 Conclusion

We have studied the on-line scheduling problem of a single batching machine to minimize the
makespan. If jobs arrive over time and inserted idle-times are not allowed in the schedule then no
deterministic algorithm can be better than 2-competitive. If inserted idle-times are allowed, then
it might be beneficial to leave the machine idle since we have presented a general lower bound of
(1++/5) /2 both for bounded and unbounded batch sizes. We have proposed a simple deterministic
rule that yields a tight performance guarantee for the problem 1|p — batch,r;, p; = p,b = 00|Ciraz
and for the problem with two distinct release dates (i.e. jobs arrive in two bursts). We think that
the worst-case behaviour of on-line algorithms are not related to the batch size, but is only due
to the interaction between batch processing times and job arrival times.

Perspectives of this work are to study the on-line single batching machine scheduling problem:

e when unbounded batch sizes and arbitrary processing times are considered. We have only
obtain a best possible deterministic algorithm when jobs have equal processing times or if
there exist only two distinct release dates. We do not know if the algorithm aH, presented
in this paper, leads to a best possible deterministic algorithm in the general problem with
unbounded batch size.

e when bounded batch sizes and arbitrary processing times are considered. The best known
deterministic on-line algorithm is 2-competitive. We do not know if a better algorithm can
be designed. This problem remains an interesting open issue.

e to minimize other performance measures such as maximum lateness, mean completion time
and number of tardy jobs.

To the best of our knowledge, no randomized on-line algorithm (i.e. an algorithm that performs
a random choice whenever a decision has to be taken) has been proposed for scheduling a single

batching machine. For numerous problems, randomized algorithms allow to improve performance
guarantees in the on-line setting. It might be the case for the scheduling problem considered in
this paper.

References

Baptiste, P., 2000. Batching identical jobs. Mathematics methods of Operations Research 53,
355-367.

Borodin, A., R.El-Yaniv, 1998. Online Computation and Competitive analysis. Cambridge Uni-
versity Press.

Brucker, P., 2001. Scheduling Algorithms. Springer Verlag.

Brucker, P., Gladky, A., Hoogoveen, H., Kovalyov, M., Potts, C., Tautenhahn, T., VanDeVelde,
S., 1998. Scheduling a batching machine. Journal of Scheduling 1 (1), 31-58.

Tkura, Y., Gimple, M., 1986. Efficient scheduling algorithms for a single batch processing machine.
Operations Research Letters 5, 61-65.

Lee, C., Uzsoy, R., 1999. Minimizing makespan on a single batch processing machine with dynamic
job arrivals. International Journal of Production Research 37 (1), 219-236.

Lee, C., Uzsoy, R., Martin-Vega, L., 1992. Efficient algorithms for scheduling semiconductor burn-
in operations. Operations Research 40, 219-236.

Liu, Z., Yu, W., 2000. Scheduling one batch processor subject to job release dates. Discrete Applied
Mathematics 105, 129-136.

Poon, C., Zhang, P., 2000. Minimizing makespan in batch machine scheduling. in: proc Int. Sym-
posium on Algorithms and Computations (ISAAC 2000), Lecture Notes in Computer Science,
Springer Verlag 1969, 386-397.

Potts, C., Kovalyov, M., 2000. Scheduling with batching: a review. European Journal of Opera-
tional Research 120 (2), 228-249.

Sgall, J., 1998. On-line scheduling - a survey. in: On-line algorithms. The state of the art, Lecture
Notes in Computer Science, Springer Verlag 1442, 196-231.

Sung, C., Choung, Y., 2000. Minimizing makespan on a single burn-in oven in semiconductor
manufacturing. European Journal of Oerational Research 120, 559-574.

Uzsoy, R., Lee, C., Martin-Vega, L., 1992. A review of production planning and scheduling mod-
els in the semiconductor industry, part i:system characteristics, performance evaluation and
production planning. IEE Transactions on Scheduling and Logistics 26, 44-55.

Zhang, G., Cai, X., Wong, C., 2001. On-line algorithms for minimizing makespan on batch pro-
cessing machines. Naval Research Logistics 48, 241-258.

