
An Automated Information Integration Technique using an Ontology-based
Database Approach

Ladjel Bellatreche & Guy Pierra & Nguyen Xuan Dung & Dehainsala Hondjack
LISI/ENSMA - B.P. 401I9
86960 Futuroscope Cedex - FRANCE
{bellatreche, pierra, dung.nguyen-xuan, hondjack}@ensma.fr

ABSTRACT: Developing intelligent systems to integrate numerous heterogeneous data sources in order to give
end users an uniform query interface is a great challenging issue. The process of constructing a global schema
of the integrated system is usually done manually. This is because of the mechanisms of solving different
conflicts existing in an heterogeneous context. Even more these data sources do not contain enough knowledge
to help solving these conflicts and then generating the global schema. In this paper, we present a new approach
to integrate heterogeneous sources based on a priori approach (ontology-based database). The originality of
our approach is that each data source participating in the integration process contains an ontology that defines
the meaning of its own data using an ontology model called PLIB. This approach ensures the automation of
the integration process when (1) all data sources have the same ontology, and (2) all sources reference a
shared ontology, and each one can extent this ontology by adding new concepts. Finally, we present integration
algorithms for the previous cases.

1 INTRODUCTION

The advent of the Internet provides us the access
to many autonomous and heterogeneous information
sources. Information integration recently received a
great attention due to many data management ap-
plications (example of data warehouses (Bellatreche,
Karlapalem, & Mohania 2001)), e-commerce (Ome-
layenko & Fensel 2001) and engineering applications
(e.g., a catalog management (Pierra 1997)). The pur-
pose of information integration is to support seamless
access to these data sources. A user accesses these
sources in an uniform way, i.e., as if she is access-
ing one large database. Data integration is the prob-
lem of combining the data residing at different het-
erogeneous data sources, and providing to users an
unified view of these data (this view is called global
schema). Formally, a data integration system is a
triple I :< G,S,M >, where G is the global schema
(over an alphabet AG) which provides a reconciled
and a integrated schema, S is the source schema (over
an alphabet AS) which describes the structure of the
set of sources participating in the integration process,
and M is the mapping between G and S which es-
tablishes the connection between the elements of the
global schema and those of the sources. Queries to

� � � � � � � � � � � � � �� � � � � � �
. . .

� � 	

 � � � � 	

 � �� � 	

 � �
. . .

� � � 	 � � �

� � � � � � ��� � � � � � �

Figure 1: A Mediator Architecture

a data integration system are posed in terms of the
relations in G, and are intended to provide the spec-
ification of which data to extract from the virtual
database represented by I . Two major architectures
of the information integration are described: mate-
rialized (warehouse) and virtual. In the materialized
approach, copies of information from several data
sources are stored in a single database. In the vir-
tual (mediator) architecture, a software called a medi-
ator supports a virtual database (without storing data
into a database), translates queries into source queries
and synthesizes results and returns answers to a user
query. Most of existing integration system dealing

1

Chochon
Proc. of Concurrent Engineering (CE'2003), Special track Data Integration in Engineering, Madeira, Portugal, 26-30/07/2003, 217-224

with the source heterogeneity use the mediation archi-
tecture (see figure 1), in which a mediator processes
user queries by accessing source data. Two main
concepts constitute this architecture (Ullman 1997):
wrappers and mediators. A wrapper wraps an infor-
mation source and models the source using a source
schema. A mediator maintains a global schema and
mappings between the global and source schemas.

Currently, there are two main approaches to inte-
grate data and to answer queries without materializ-
ing a global schema: Global-as-View (GaV) or query-
centric approach (TSIMMIS project (Chawathe,
Garcia-Molina, Hammer, Ireland, Papakonstantinou,
Ullman, & Widom 1994)) and Local-as-View(LaV)
or source-centric approach (Manifold (Levy, Rajara-
man, & Ordille 1996), Picsel (Franois Goasdoué,
Lattès, & Rousset 2000)). In a GaV, the global
schema is expressed as a view (a query) over the data
sources. This approach facilitates the query reformu-
lation by reducing it to simple execution of views
in ordinary databases. However, changes in informa-
tion sources or adding a new information source re-
quires a database administrator (DBA) to revise the
global schema and the mappings between the global
schema and source schemas. Thus, GaV is not scal-
able for large applications. In the source-centric ap-
proach, each data source is expressed with one or
more views over the global schema. Therefore, LaV
scales better, and is easier to maintain than GaV be-
cause DBAs create a global schema independently of
source schemas. Then, for a new source schema, the
DBA only has to give (adjust) a source description
that describes source relations as views of the global
schema. In order to evaluate a query, a rewriting in
terms of the data sources is needed. The rewriting
queries using views is a difficult problem in databases.
Thus, LaV has low query performance when users
frequently pose complex queries.

The methodology of an integration process consists
for four steps: (1) Pre-integration: analyzes schemas
before integration to determine the integration tech-
nique, order of integration, and to collect additional
information, (2) schema comparison: compares con-
cepts and searches for conflicts and schemas proper-
ties, (3) conforming the schemas : solves schema con-
flicts, and (4) merging and restructuring: merges and
restructures the schemas so they conform to certain
criteria.

Any integration system should consider both inte-
gration at schema level (schema integration consists
in consolidating all source schemas into a global or
mediated schema that will be used as a support of
user queries) and the data level (global schema pop-
ulation from the contents of data sources). Construct-
ing an integrated view of data sources is a hard task
because they (data sources) store different types of

data, in various formats, different contexts, with dif-
ferent meanings, and different names. In order to pro-
vide an integrated view; solving different conflicts
(naming conflicts, scaling conflicts, and confound-
ing conflicts) is required 1. Integration of heteroge-
neous data sources is facing to the meta-data man-
agement problem (Madhavan, Bernstein, Domingos,
& Halevy 2002). For example, a data source may
use EmployeeID to represent the employee number
and another one uses Emp#. To solve these different
conflicts, a higher level programming interface is re-
quired (Bernstein 2003). This interface can be done
by using meta-data management (or model manage-
ment). Without using meta-data management tech-
niques, integrating heterogeneous data sources stays a
difficult problem. Therefore, most of the existing inte-
gration systems solve these conflicts manually. Con-
sequently, the integration process in these systems is
done semi automatically (e.g., the schema and in-
stances integration processes are done manually and
automatically, respectively). This type of integration
may compromise the quality of the integrated system
(Bouzeghoub 2001). The circumstances of this man-
ual integration is that the integrator (or the database
administrator) do not have a rich ”knowledge” about
the semantic and the schematic of the data sources.

-

� � � � � � � � � � � � � �
	 � � �
 � � � � � �

� � � � � � � � � �
� � � � � � �

� � � � � � � � � � � � � � �
! " # � � $ � � � � $ �% � � � �

� � � � & � � � ' � (�
� � � �) � (* + , -

. � � �) � (* � � � � � � � � � �
& � � �
 � � / � & � + 0 -

Figure 2: The Ontology-based Database Architecture

Recently, several researchers recommend the uti-
lization of an ontology (describing the meaning of
each data source) to capture different semantics
and knowledge about data sources (Bernstein, Haas,
Jarke, Rahm, & Wiederhold 2000).

In this paper, we present a novel approach of inte-
grating data sources called ontology-based database
integration. This approach is based on the a priori ap-
proach, where we assume that each data source con-
tains an ontology as part of its schema as shown in
Figure 2. The ontology of each data source is con-
structed based on the PLIB ontology model (Pierra
1997), (Pierra, Potier, & Sardet 2003). By using this

1These conflicts will be described in section 2.

2

approach, the process of integrating different sources
2 may be done automatically in the following cases:

1. Data sources use a same ontology (or a fragment
of that ontology). This case is called SameOnto.

2. Data sources reference a shared ontology, and
each source can extend it by adding new con-
cepts and new properties 3 (this case is called
MapOnto).

The use of the ontology-based database integration
approach (a meta-data management technique) repre-
sents a great advance in developing intelligent inte-
gration systems by automating the major steps of the
integration process as we will show in this paper.

The rest of this paper is organized as follows: in
section 2, we describe the background of the integra-
tion problem in the context of heterogeneous sources,
and we present an overview of PLIB ontology model
that will be used as a basic support for our integration
algorithms, in section 3, we present our integration
approaches for the SameOnto and MapOnto cases.
Related work is outlined in Section 4 and Section 5
concludes the paper.

2 BACKGROUND
To deal with data integration process in heteroge-
neous context, different categories of conflicts should
be solved (Bernstein 2003), (Goh, Bressan, Madnick,
, & Siegel 1999), (Wache, Vögele, Visser, Stucken-
schmidt, Schuster, Neumann, & Hübner 2001): nam-
ing conflicts , scaling conflicts, and confounding con-
flicts. These conflicts may be encountered at schema
level and at data level.

• Naming conflicts : occur when naming schemes
of concepts differ significantly. The most fre-
quently case is the presence of synonyms and
homonyms.

• Scaling conflicts: occur when different reference
systems are used to measure a value (for example
price of a product can be given in dollar or in
Euro).

• Confounding conflicts : occur when concepts
seem to have the same meaning, but differ in re-
ality due to different temporal contexts. For ex-
ample, the weight of a person depends on the
date where it was measured. Among properties
describing a data source, we can distinguish two
types of properties: context dependent properties
(e.g., the weight of a person) and context non-
dependent properties (gender of a person).

2The integration process includes consolidated ontology and
schema generations and schema population

3The principle of existence of an ontology is to be shared

• Representation conflicts : arise when two source
schemas describe the same concept in different
ways. For example, in a source, student’s name
is represented by two elements FirstName and
LastName and in another one it is represented by
only one element Name.

2.1 The PLIB ONTOLOGY MODEL
Note that all sources contains ontology based on PLIB
(Part Library) model. This model has been developed
in 90’s in order to exchange and integrate engineer-
ing component databases (Pierra 1990). Contrary to
the existing ontology models (Gruber 1995), a PLIB
ontology model has the following characteristics:

• Conceptual: each entity and each property are
unique concepts completely defined, the terms
(or words) used for describing them are only a
part of their formal definitions.

• Multilingual: A global unique identifier (GUI) is
assigned to each entity and property of the ontol-
ogy. Textual aspects of their descriptions can be
written in several languages. The GUI is used to
identify exactly the similarities between proper-
ties (or between entities).

Example 1 Let S1 and S2 be two data sources
constructed according the PLIB ontology model
describing a Person. These two sources contain
two properties with different names, let’s say,
Person.Family Name and Personne.Patronyme.
Based on their GUIs, two cases can be distin-
guished:

1. These two properties have the same GUI
(GUI1 as shown in Figure 3), for the inte-
gration system, these properties are identi-
cal (they represent the same thing, i.e., the
family name of a person).

2. They have different GUIs, for the integra-
tion system, they are different, even they
have the same name (example of the prop-
erty status in Figure 3).

One of the utilization of GUI is solving naming
conflicts.

• Modular: an ontology can references another for
different reasons: importing categories, proper-
ties without duplicating them.

• Multi-representation: Once a concept is defined,
it can be associated to numerous representations,
where each one is represented as a class (entity).
The point of view of each representation is also
a concept represented as a class by the ontology.

3

For example, we can define a class Person, the
particular point of view of its study status (stu-
dent view class) may be represented in the stu-
dent representation class (Figure 4).

• Consensual : The conceptual model of PLIB on-
tology is based on an international consensus and
published as international standards (IEC61630-
4:1998, ISO13584-42:1998).

� � � � � � � � � � �
	
 � � � � � � � � � � �

	
 � �

� � � � � �
� � � �

� � � � � � � � �
	
 � �

� � � � !
	
 � "

� � � � � � � �
� � � �

	 � � # � �
	
 � $

� � � � � � � � � � �
	
 � � � � � � � � � � �

	
 � �
� � � � !
	
 � %

� � � � � �
� � � �

� � & �
	
 � $

� � � � � � � � �
	
 � �

� � � � � ' � � ! ! � � (�
	
 � �

� � � � !
	
 � "

� � � � � � � �
� � � �

) � � � * � � ! � � +
	
 � ,

Figure 3: An example of solving naming conflicts in
PLIB

Thus, a PLIB ontology consists of three categories
of classes: definition classes, representation classes,
and view classes. The definition class represents the
beings of the areas of interests, with all their rigid
properties. A property is rigid if it is essential to all its
instances. The representation classes have additional
properties depending on how the definition class are
used for different purposes (or point of views) (Pierra
1993). The view classes capture the context of each
particular representation class: each representation
class shall reference a view class as its modeling con-
text.

Example 2 Consider a class definition of Person
with the following rigid properties: Family name, Sur-
name, Gender, Birthdate, etc. Based on this class def-
inition, different representation classes of the class
Person can be defined like Student representation
class with additional properties like Registration
number, discipline, Level, etc (see Figure 4). The view
class defines the context corresponding to this repre-
sentation class. For example it may contain properties
like name and location of the university. The context
is modeled in PLIB conceptual ontology model.

The PLIB ontology model is defined and sev-
eral tools were developed to create, validate, manage
or exchange ontologies (such tools can be found at
www.plib.ensma.fr).

- . / 0 1 2 3 . 4 5 2 5 6 5 1 2
7 8 9 0 0

: ; < = >
? @ A B C < = >
? D E B F G H I < F >
? J > C K > B

L M N O P Q M R P S T P U P Q M V M W X Q
Y Z V U U

@ [\ B F] = < C ^ > [B >] > C F < F E \ C
_ ` <]]

: ^ > a E] F B < F E \ C C A = b > B
? I E] _ E [` E C >
? c > d > `

? e B < _ F E _ > K @ [\ B F]

f g h i j k g l m j n o p q r r

: s C E d > B] E F t ; < = >
? s C E d > B] E F t c \ _ < F E \ C

Figure 4: An example of different classes of the PLIB
ontology model

2.2 ONTOLOGY-BASED DATABASES
Contrary the existing database structures (that contain
two parts: data according to a logical schema and a
meta-base describing tables, attributes, Foreign keys,
etc.) an ontology-based database contains four parts
: two parts as in the conventional databases plus the
ontology definition and meta-base of that ontology.
The relationship between the left and the right parts
of this architecture associates to each instance in the
right part its corresponding concepts defined in the
left part. This architecture is validated by a prototype
developed on Postgres (Dehainsala 2002).

3 ALGORITHMS FOR INTEGRATING
ONTOLOGY-BASED DATABASE SOURCES

For the purpose of the discussion a stand alone PLIB
ontology may defined as the quadruplet :
O :< C,P,Sub,Applic >, where:

• C is the set of the classes used to describe the
objects of a given domain;

• P is the set of properties of the classes;

• Sub is is the subsumption function defined as
Sub : C → 2C 4, where for a class C of the on-
tology it associates its direct subsumed classes.

• Applic : C → 2P is a function that associates to
each ontology class those properties that are ap-
plicable (i.e., essential for each instance of this
class).

Example 3 Figure 5 gives an example of an on-
tology that contains six classes (C = {Person,
Student, LocalStudent, ForeignerStudent, Lec-
turer, AdminstrativeStaff}). A set of properties
P ={Name, Citizenship, BirthDate, ListOfPro-
ject, TuitionFee, Visa Number} is assigned by
the applic function to each class. For instance,

4We use the symbol 2
C to denote the power set of C.

4

the class Person has the following properties:
Name and Birthdate. The class ForeignerStudent
has the property VisaNumber, etc. The subsump-
tion function Sub defines specialization relation-
ships between classes (for example, the class
Person) subsumes the class Student.

� � � � � �

� � � � � � � � � 	
 � � � � �

� � � � � � � � � � �� �
 � � � �� � � � � � � �
 � � � � �

� � � � � 	
 � � � � �

� 	 � � � � �
 � � � � � � � � � 	 � � 	 � � � ! � � � � � " � � � � � � � � � � # � � � 	 � � � $ � � � � � � %

Figure 5: An Example of an ontology and its different
elements

An ontology-based database OBDB is a quadruplet
OBDB :< O,I,Sch,Pop >, where:

• O is an ontology (O :< C,P,Sub,Applic >);

• I is the set of instances of the database;

• Sch : C → 2P associates to each ontology class
the properties which are effectively used for de-
scribing class instances. This schema is cho-
sen by the integrator for each leaf class (no-
leaf classes are considered as abstract classes).
This schema should ensure the following prop-
erty: ∀c ∈ C,Sch(c) ⊂ Applic(c) (only applica-
ble properties may be used for describing class
instances). It is computed by the system for non-
leaf classes. We assume that a virtual table is cre-
ated by the OBDB at each non-leaf class level
as the projection on the applicable properties of
these classes of all instances of its subclasses
(subsumption representation);

• Pop : C → 2I that associates to each class (leaf
class or not) those own instances.

3.1 INTEGRATION WHEN ALL DATA
SOURCES HAVE THE SAME ONTOL-
OGY

Let S = {SBO1, SBO2, ..., SBOn} be the set of data
sources participating in the data integration process.
Each data source SBOi (1 ≤ i ≤ n) is defined as fol-
lows: SBOi =< Oi, Ii, Schi, P opi >. The ontology
Oi (1 ≤ i ≤ n) of each source is defined as a fragment
of the common ontology O. It is defined as quadruplet
Oi :< Ci, Pi, Subi,Applici >, where :

• Ci ⊆ C

• Pi ⊆ P

• ∀c ∈ Ci, Subi(c) ⊆ Sub(c)

• ∀c ∈ Ci,Applici(c) ⊆ Applic(c)

Integrating these n data sources, means finding an on-
tology, a schema and a population of the integrated
system. Therefore the integration process OInt is de-
fined as triplet OInt :< OOInt, SchOInt, P opOInt >.
Now the question that we should answer is how to
find the structure of each element of OInt?

• The ontology of the integrated system is O
(OOInt = O).

• The schema of the integrated system SchOInt is
defined for each class c as follows:
SchOInt(c) = (

⋂

A(
⋂

B Schi(c
′)))

⋂

Applic(c), 5

where A = {c′ ∈ {cl ∪ Sub(c)}}, and
B = {i | c′ ∈ Ci ∧ Popi(c

′) 6= φ}.

• The population of each class of the integrated
system PopOInt is defined as follows:
PopOInt(c) = (

⋃

i projsch(c)Popi(c), where proj
is the projection operation as defined in classical
databases.

3.2 INTEGRATION WHEN ALL DATA
SOURCES REFERENCE A SHARED ON-
TOLOGY

This case differs from the previous one by the fact that
each data source has its own ontology. But we assume
that all the ontologies reference ”as much possible” a
shared ontology O :< C,P,Sub,Applic > in the fol-
lowing senses:

1. a local source contains a specific class if and only
if a class with a same meaning does not exist in
the shared ontology,

2. each class that does not belong to the shared
ontology references explicitly its smallest sub-
sumer within this ontology,

3. each property whose meaning is similar to a
property of the shared ontology references ex-
plicitly this property.

5This definition ensures that instances of the integrated sys-
tem are not expanded with null values to fit with the more pre-
cisely defined instances. In place, only properties which are pro-
vided in all data sources are preserved. In some data sources may
incur empty classes. These classes are removed from the set of
classes used to compute the common provided properties.

5

Therefore, each source SBOi maps the referenced on-
tology O to its ontology Oi. This mapping can be
defined as follows: Mi : C → 2Ci , where Mi(c) =
{greatest classes of Ci subsumed by c}. Contrary to
the previous case, each data source SBOi is defined
as quintuple: SBOi =< Oi, Ii, Schi, P opi,Mi >. To
integrate the data sources in this scenario we should
find the structure of the final integrated system IF :<
OF , SchF , P opF >. Note that the structure of OF is
< CF , P F , SubF ,ApplicF >. Each element of these
structures is defined as follows:

• Integrated classes CF = C
⋃

(i | 1≤i≤n) Ci,

• P F = P
⋃

(i | 1≤i≤n) Pi,

• ∀c ∈ C, SubF (c) =
Sub(c)

⋃

(i ∈ {i | c ∈ Ci}) Subi(c)

• ApplicF (c) =
{

Applic(c), if c ∈ C
Applic(ci), if c ∈ Ci ∧ c /∈ C

• The population PopF of each class (c) is com-
puted recursively using a post-order tree search.
If c belongs to one Ci and does not belong to C,
its population is given by: PopF (c) = PopF

i (c).
If c is a leaf of the integrated ontology tree; its
population is defined as follows:

PopF (c) =

{

φ, if c /∈ Ci (1 ≤ i ≤ n)
⋃

(i | 1≤i≤n) Popi(c), if c ∈ Ci

Otherwise (i.e., c is a no-leaf node of the shared
ontology tree), PopF (c) is defined as follows:
PopF (c) =

⋃

(cj∈SubF (c)) PopF (cj)

• The schema of each class c of the integrated sys-
tem is computed following the same principle as
the population of c by considering leaf nodes and
non-leaf nodes. If c is a leaf of the integrated on-
tology tree; its schema is defined as follows:

SchF (c) =

{

φ, if c /∈ Ci (1 ≤ i ≤ n)
⋂

(i |Schi(c)6=φ) Schi(c), if c ∈ Ci

Otherwise;
SchF (c) =

⋂

(cj |cj ∈ SubF (c)∧SchF (cj)6=φ) SchF (cj)

By using an ontology-based database approach for in-
tegrating heterogeneous sources, the task of describ-
ing formally the data integration process is simpler
than in the previous systems and may be automated.
It is important to notice that when all data sources use
independent ontologies, the task of mapping these on-
tologies onto a receiver ontology may be done man-
ually, but the integration process will be performed
automatically as in the MapOnto case.

4 RELATED WORK
Several integration systems were proposed in the lit-
erature where we can categorize them into three major
classes : (1) global as view systems (GaV), (2) local
as view systems (LaV) and (3) systems based on se-
mantic interoperability.

GaV systems In this category, we present three ma-
jor systems: TSIMMIS (Chawathe, Garcia-Molina,
Hammer, Ireland, Papakonstantinou, Ullman, &
Widom 1994), Garlic (Roth, Arya, Haas, Carey, Cody,
agin, Schwarz, Thomas, & Wimmers 1996) and SIMS
(Arens & Knoblock 1993).
TSIMMIS (Chawathe, Garcia-Molina, Hammer, Ire-
land, Papakonstantinou, Ullman, & Widom 1994) is
a mediator system developed at Stanford university.
It aim is to simplify the extraction and integration
of data from semi-structured data sources. TSIMMIS
does not provide a mediator schema, but propagates
all schemas of the components wrappers to the user.
Data model heterogeneity is resolved using the semi-
structured ”Object exchange model” (OEM), a sim-
ple model with objects and object nesting. To re-
solve semantic conflicts between components, a dic-
tionary service was proposed, but not implemented.
The TSIMMIS was not developed to automates the
integration process.

Garlic (Roth, Arya, Haas, Carey, Cody, agin,
Schwarz, Thomas, & Wimmers 1996) is a project of
IBM Research. It addresses large-scale multimedia
information systems by considering specialized com-
ponent systems to store and search for particular data
types like image management systems. Heterogeneity
in schemas is not considered.

SIMS (”Search in Multiple Sources”) focuses on
integration of heterogeneous databases and knowl-
edge bases (Arens & Knoblock 1993). It uses a
domain model for each integration application, de-
scribed in LOOM, as semantic modeling language de-
rived from KL-ONE. Sources are modeled according
to this domain model. It uses an ontology to describe
the domain about which information is stored in the
information sources, as well the structure and con-
tents of the information sources themselves. Wrap-
ping sources is done manually.

LAV systems Information Manifold is a prototype
developed by AT&T for integrating web-based data
sources (Levy, Rajaraman, & Ordille 1996). Like
TSIMMIS the global schema is virtual. The global
view for all users called world view is expressed using
the relational data model and class hierarchies. For
each user access, Manifold identifies relevant sources
and executes sub-queries to them. After that the user
is responsible for cleaning overlapping information or
performing object fusion mechanisms.

6

The integrated schema obtained by the previous in-
tegration systems is mapped to local sources by log-
ical rules or query expressions specified by the de-
signer. The mediators and wrappers used by these sys-
tems are not designed to define algorithms for resolv-
ing conflicts, or producing the global schema. The
definition of the global schema and resolution of con-
flicts are done manually by the designer contrary to
our approach.

Systems based on semantic interoperability
COIN project (COntext Interchange) performs
data integration based on logical axioms (Bressan,
Goh, Levina, Madnick, Shah, & Siegel 2000).
COIN has been designed to integrate structured
and semi-structured data, where data sources are
encoded into elevation axioms (for mapping values),
context axioms (for representing context semantics),
and conversion functions (for converting from one
context to another). COIN did not build an integrated
view, but it used a context mediator for querying and
reconciling potential conflicts between data sources.

5 CONCLUSION
In this paper, we proposed an automated approach
for integrating heterogeneous sources. We have pre-
sented a new integration technique called ontology-
based database integration approach. The presence of
an ontology modeled according to the PLIB ontology
model in each database helps in capturing the knowl-
edge about data, a schema, properties, etc. Therefore
it contributes to the automation of the integration pro-
cess contrary to the existing techniques. This automa-
tion is ensured in two cases: (1) all sources use the
same ontology and (2) they reference a shared ontol-
ogy.

In addition to its capability for automating the inte-
gration process of heterogeneous databases (note that
a prototype of developing an ontology-based database
is currently in progress in our laboratory), there are
many other future directions that need to be explored.
Some of the more pressing ones are:

• Evaluating this approach in a real situation and
comparing it with the existing approaches in or-
der to measure the quality of the integration
schema.

• Extending the utilization of this approach to dif-
ferent application scenarios like schema evolu-
tion, schema exchange, schema matching.

• Considering the query optimization aspect to see
how an ontology can be used for indexing query
(semantic indexing).

• Providing a cost model to evaluate queries
on a global schema on the integrated system.

This cost model should take into account the
ontology-based database structure (four parts).

REFERENCES
Arens, Y. & Knoblock, C. A. (1993, May). Sims: Retriev-

ing and integrating information from multiple sources.
Proceedings of the International Conference on Man-
agement of Data (SIGMOD’1993), 562–563.

Bellatreche, L., Karlapalem, K., & Mohania, M. (2001).
Some issues in design of data warehousing systems. In
in Developing Quality Complex Data Bases Systems:
Practices, Techniques, and Technologies, Edited by Dr.
Shirley A. Becker. Idea Group Publishing.

Bernstein, P. (2003). Applying model management to
classi-cal meta data problems. in Proceedings of the
2003 CIDR Conference.

Bernstein, P., Haas, L. M., Jarke, M., Rahm, E., & Wieder-
hold, G. (2000). Panel: Is generic metadata management
feasible? vldb, 660–662.

Bouzeghoub, M. (2001, April). Ausing semantics to im-
prove schema and data integration. Proceedings of the
International Workshop on Information Integration on
the Web (Invited Talk.

Bressan, S., Goh, C., Levina, N., Madnick, S., Shah, A., &
Siegel, M. (2000, September). Context knowledge rep-
resentation and reasoning in the context interchange sys-
tem. Applied Intelligence 13(2), 165–180.

Chawathe, S. S., Garcia-Molina, H., Hammer, J., Ireland,
K., Papakonstantinou, Y., Ullman, J. D., & Widom,
J. (1994, Marsh). The tsimmis project: Integration of
heterogeneous information sources. Proceedings of the
10th Meeting of the Information Processing Society of
Japan, 7–18.

Dehainsala, H. (2002). Analyse et implmentation d’un
modèle objet express dans une base de données relation-
nelle objet: Postgres. In Mémoire d’Ingénieur - Stage ef-
fectué au LISI/ENSMA.

Franois Goasdoué, F., Lattès, V., & Rousset, M. C. (2000,
December). The use of carin language and algorithms
for information integration: The picsel system. Interna-
tional Journal of Cooperative Information Systems (IJ-
CIS) 9(4), 383–401.

Goh, C., Bressan, S., Madnick, E., , & Siegel, M. D.
(1999). Context interchange: New features and for-
malisms for the intelligent integration of information.
ACM Transactions on Information Systems 17(3), 270–
293.

Gruber, T. (1995). A translation approach to portable on-
tology specification. Knowledge Acquisition 5(2), 199–
220.

Levy, A. Y., Rajaraman, A., & Ordille, J. J. (1996, June).
The world wide web as a collection of views: Query pro-
cessing in the information manifold. Proceedings of the
International Workshop on Materialized Views: Tech-
niques and Applications (VIEW’1996), 43–55.

Madhavan, J., Bernstein, P., Domingos, P., & Halevy, A.
(2002). Representing and reasoning about mappings be-
tween domain models. in Proceedings of the 18th Na-
tional Conference on Artificial Intelligence (AAAI’02),
80–86.

7

Omelayenko, B. & Fensel, D. (2001, September). A two-
layered integration approach for product information in
b2b e-commerce. Proceedings of the Second Interna-
tional Conference on Electronic Commerce and Web
Technologies, 226–239.

Pierra, G. (1990). An object oriented approach to ensure
portability of cad standard parts libraries. Proceedings of
the European Computer Graphics Conference and Exhi-
bition (Eurographics’90), 205–214.

Pierra, G. (1993). A multiple perspective object oriented
model for engineering design. in New Advances in Com-
puter Aided Design & Computer Graphics, 368–373.

Pierra, G. (1997, April). Intelligent electronic component
catalogues for engineering and manufacturing. Sym-
posium on Glogal Engineering Networking (GEN’97),
Special Session on Intelligent Electronic Catalogues,
331–352.

Pierra, G., Potier, J. C., & Sardet, E. (2003). From digi-
tal libraries to electronic catalogues for engineering and
manufacturing. International Journal of Computer Ap-
plications in Technology (IJCAT) 18, 27–42.

Roth, M. T., Arya, M., Haas, L., Carey, M., Cody, W.,
agin, R., Schwarz, P., Thomas, J., & Wimmers, E.
(1996, June). The garlic project. Proceedings of the
ACM SIGMOD International Conference on Manage-
ment of Data, 557–557.

Ullman, J. D. (1997, January). Information integration us-
ing logical views. Proceedings of the International Con-
ference on Database Theory (ICDT), Lecture Notes in
Computer Science 1186, 19–40.

Wache, H., V ögele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., & H übner, S. (2001, Au-
gust). Ontology-based integration of information - a sur-
vey of existing approaches. Proceedings of the Interna-
tional Workshop on Ontologies and Information Shar-
ing, 108–117.

8

