
Contents

2 Petri Nets: a Graphical Tool for System Modelling and Anal-

ysis

Annie Choquet-Geniet, Pascal Richard : 1

2.1 Overview of Petri Nets . 1
2.2 Analysis and Speci�cation of Case 1 . 3

2.2.1 One Order with a Data/Action Approach . 3
2.2.2 One Order with a Structural Approach . 6
2.2.3 Several Orders . 9

2.3 Analysis and Speci�cation of Case 2 . 12
2.3.1 Entry Flow in Stocks . 12
2.3.2 Flows of orders . 13

2.4 Validation of the Speci�cation . 14
2.5 The Natural Language Description of the Speci�cations 16

2.5.1 Case 1. 16
2.5.2 Case 2. 16

2.6 Conclusion . 17

2 Petri Nets: a Graphical Tool for System

Modelling and Analysis

Annie Choquet-Geniet and Pascal Richard

2.1 Overview of Petri Nets

Petri nets have been de�ned in 1962 by C.A. Petri [9,10] in order to model or
to specify sequential and parallel systems including resources, data and events
management, sequential evolution of the program counter. They are used either
as a speci�cation tool, or for analysing a previously designed system. In the �rst
case, the system to design is modelled by a net, which is then implemented. In the
second case, an existing system is modelled by a net, and its properties are then
deduced, veri�cations are performed. One can verify that the system meets the
requirements expressed in the speci�cation, or can use the nets for performance
analysis. Petri nets constitute a compromise between �nite automata and the
Turing machine .

There are two kinds of de�nitions concerning Petri nets:

� De�nitions related to the structure of the nets, which are correlated to the
static description of the system: what are the di�erent parts of the system,
what actions are performed by the system, what conditions are required for
an action to be feasible, what e�ects does an action have on the di�erent
parts of the system ?

� De�nitions related to the behaviour of the net, which describe the dynamic
evolution of the system: what are the possible actions according to the cur-
rent state, what happens when some of them are performed, what kinds of
situations are then possible to reach, what further evolution can be consid-
ered...

A very nice aspect of Petri nets is that they support a graphical represen-
tation, which enables a good general view of the modelled system and a rather
intuitive perception of its di�erent components.

A Petri net (or Place/Transition net) is an oriented graph with two kinds
of vertexes (see �gure 2.1). It consists in a �nite set of places (P), viewed as
circles, a �nite set of transitions (T), viewed as rectangles (corresponding to
the di�erent actions), a set of labelled arcs from places to transitions or from
transitions to places, which express the conditions required for an action to
be feasible and its consequences when it occurs. The valuation function W , is
de�ned from P � T [T � P in N , the set of natural numbers.

2 Annie Choquet-Geniet, Pascal Richard

A marking function M : P ! N is added to the previous description of the
net, which represents the current state of the system, while the graph represents
only the topology of the net, i.e. its di�erent parts, and the connections between
these parts. For each place p, M(p) is interpreted as the number of tokens held
by p.

Fig. 2.1. There are three places (p, q, r) and two transitions (x and y). The �ring of

x requires one token in p and three in q, and it produces one token in r. The �ring of

y requires two tokens in place r, and it produces 2 tokens in p, one in q and 4 in r. In

the initial state, p and q are empty, and r holds two tokens.

Fig. 2.2. The �ring rule: on �gure 2.2.a, the transition t can �re, and its �ring produces

the marking of Fig 2.2.b. On Fig. 2.2.c and 2.2.d, the transition t cannot �re because

one token is missing, in place p1 (Fig. 2.2.c) or p2 (Fig. 2.2.d).

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 3

The dynamics of the system is described by means of the �ring rule (�g-
ure 2.2): a transition can �re (or is enabled) if each of its input places p contains
at least as many tokens as indicated by the valuation of the arc from p to t.
These tokens are removed from the input places when the transition �res, and
tokens are added to the output places, again according to the valuation of the
arcs from t to these places.

The �ring of transitions can straightforwardly be extended to the �ring of
sequences of transitions. For instance, if we consider the net of �gure 2.1, the
sequence yyyx can �re and leads to the marking M so that M(p) = 5;M(q) = 0
and M(r) = 9.

Let us �nally mention that there exist a large number of tools for editing and
analysing Petri nets. As an example, we can mention Design/CPN [4], which
provides both an editor of Petri nets, and an analysis environment. And let us
also mention that an ISO norm 15909 for Petri nets is currently in preparation,
and will be useful in the future.

2.2 Analysis and Speci�cation of Case 1

We �rst present a brief overview of the di�erent semantics which can be attached
to the di�erent components of a Petri net for the purpose of modelling. A place
may be associated to: a class of resource, a counter, an event, a bu�er (possi-
bly with capacity), a condition. Transitions are generally connected to actions
concerning: resources (allocation / desallocation), the evolution of a process (in-
crementation of the program counter), the processing induced by the occurrence
of an event or by the veri�cation of a condition, a bu�er (production / con-
sumption). Finally, tokens can represent: instances of a resource, contents of a
bu�er (in these two cases, tokens are associated to data), occurrences of an event
(tokens are here associated to signals), the position of the program counter, the
fact that a condition holds.

As we show next, there may be several approaches for modelling a system,
according to the way the analysis of the system is approached. We present in
the next section two approaches. In the �rst case, we treat a single instance of
an order, but we can specify the ordered quantity. In the second case, we can
specify the number of instances of an order, but not the ordered quantity.

2.2.1 One Order with a Data/Action Approach

We have assumed that quantities for each reference of a product are expressed
as integer number. We deal with one single order, and we take into account
neither arrival of new orders nor restocking. In subsection "One Order - One
Reference", we consider that the stock contains only one reference of a product,
and in subsection "One Order - Several Reference", we enlarge our hypothesis
and consider several references.

4 Annie Choquet-Geniet, Pascal Richard

One Order - One Reference

Question 1: What are the basic data ?

Answer: We have de�ned four types of data:

� the stocked products, which constitute the stock;

� the ordered products, which de�ne the pending order;

� the invoiced order;

� the non satis�ed order.

The last two data are semantically connected to the condition \the order can
be invoiced\, and correspond to the two possible values of this condition.

Question 2: What actions are performed by the system ?

Answer: The processing of the order, which consists in invoicing it, either

completely, or partially. An order may not be completely invoiced, due to the

lack of the required amount of product.

Question 3: What does the invoicing of the order require ? What are its ef-

fects ?

Answer: There must be enough products in the stock, i.e. at least as many

as mentioned in the order. If it is the case, the corresponding quantity of

the reference is removed from the stock, the order is deleted, and an invoiced

order is produced. Otherwise the stock is emptied, the order remains partially

pending (there is a partial invoicing), and a \non satis�ed order\ is produced.

Two pieces of information are thus represented: the status of the order when

processed, and, if it has not been completely invoiced, the amount of products

which could not be handed over (�gure 2.3).

Once the analysis of the system is achieved, we de�ne the corresponding Petri
net. From our analysis four places appear, each of them corresponding to a type
of data: one place represents the stocked products (ST), one the ordered products
(OP), one the invoiced order (IO) and one the non satis�ed order (NSO). Initially,
the marking of the place ST corresponds to the amount of products held in the
stock, the marking of OP the quantity of products ordered, and both places IO
and NSO are empty since the order has not still been processed.

Question 4: Which functionality must be supported by the net ?

Answer: The net must be able to compare two markings: the marking of the

place ST must be greater than or equal to this of the place OP for the order

to be invoiced. If it is not the case (and only in this case) a non satis�ed

order must be produced.

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 5

Fig. 2.3. (a) Representation of an inhibitor arc (b) this net models the activity of a

producer which produces some objects and lays them down in a store. After a while,

a consumer starts to consume the objects, and the producer goes on producing only

when the store is empty.

Since the test to zero is required, we will use the extension of Petri net which
integrates inhibitor arcs since they explicitly implement the test to zero.

Nets with inhibitor arcs (�gure 2.4) are Petri nets where the �ring rule has
been modi�ed in order to explicitly integrate the test to zero. An inhibitor arc
enables the �ring of a transition only when its input places are empty (i.e. it
inhibits the �ring when the input places hold tokens). The valuation function
W is de�ned from P � T [T �P ! N [f�g (where � is a symbol, which does
not belong to and model the inhibitor arc) and the �ring rule becomes: t can
�re if M(p) is greater than or equal to W (p; t) for each p so that W (p; t) 2 N

and M(p) = 0 for each p so that W (p; t) = �.
We introduce three transitions: a classical transition HO which corresponds

to the handing over of products. Its �ring requires one token in both places
OP and ST. It means that each time a product is taken within the stock, it is
removed from the order. This transition can �re until either the stock is empty or
the ordered products have been completely handed over. Two further transitions
(Error and OK), connected to inhibitor arcs enable the production of a token
within either the place IO or the place NSO.

First case : n < q. After n �rings of HO, Error will �re since the marking
of ST is 0 and the marking of OP is still positive. In the �nal marking, ST is
empty, OP contains still q � n tokens (the ordered quantity which could not be
invoiced), IO is empty since the order has not be completely invoiced and NSO
holds one token.

Second case : n � q. After q �rings of HO, the transition OK will �re since the
marking of OP is 0. In the �nal marking, ST holds n�q tokens (the quantity still
present in stock), OP is empty, IO holds one token (the order has been completely
invoiced) and NSO is empty. The net of �gure 2.4 presents our solution.

6 Annie Choquet-Geniet, Pascal Richard

Fig. 2.4. A solution using inhibitor arcs. Legend: ST: stock; OP: ordered products;

IO: invoiced order; NSO: non satis�ed order; HO: handing over of product; Error: the

order could not be satis�ed; OK: the order is invoiced. n is the quantity present in the

stock and q is the ordered quantity.

One Order - Several References

We now enlarge our hypothesis, and assume the existence of several references.
The stock as well as the order are thus de�ned by the quantities of each of them,
either stocked or ordered.

Question 5: What is an order composed of ?

Answer: It consists of a list of pairs (reference, quantity), where a given ref-

erence appears at most once. The amount of each reference is still assumed

to be known.

The number of places representing either the stock or the order increases: if
there are n possible references, n places ST1, ST2, : : : , STn model the stock,
and n places OP1, : : : , OPn model the order. The transition HO is split up into
n transitions HO1,: : : , HOn, each of them concerning one reference and having
the same semantics as the transition HO of �gure 2.4.

The order is then invoiced if and only if every place OPi is empty. Finally,
the transition Error is also split up into Error1, : : : , Errorn. After the com-
plete treatment of the order, either IO contains one token if the order could be
completely handed over, or the place NSO contains as many tokens as there are
(partially) missing references. This extended solution is presented on �gure 2.5,
for two references.

2.2.2 One Order with a Structural Approach

In this section, we analyse the system di�erently, and consider that we deal
with an unique kind of order: the ordered quantity cannot be chosen, i.e. it is
a constant of the system, while the stocked quantity remains a parameter. In
our �rst approach, we were able to consider any order, but only one instance.

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 7

Fig. 2.5. A solution for the problem of one order with two references using inhibitor

arcs.

In this second approach, we take into account several instances of a given order:
the number of instances is a parameter (expressed through the initial marking),
but not the ordered quantities.

If we assume the ordered quantity to be known before we proceed to the
construction of the Petri net, we can avoid the use of inhibitor arcs. In this case,
the comparison of integers is supported by the �ring rule (which integrates it
explicitly). The ordered quantity is included within the topology of the net.

One Order - One Reference

Here again, we �rst deal with one single reference, and afterwards, we will assume
several ones.

Question 6: What are now the data, and what does the net model do here?

Answer: The data in this approach are: the stocked products, the pending or-

ders, the invoiced orders. An order is here considered in its whole, thus it

is either invoiced, or it remains pending. The partial handing over of the

ordered products cannot here be modelled.

Using this approach, we de�ne three places: one models the stocked products
(ST), one the pending orders (PO) and one corresponds to the invoiced orders
(IO). The marking of ST corresponds again to the amount of products held in
the stock. The marking of PO corresponds to the number of pending orders.
Finally, the initial marking of IO is 0. It will afterwards represent the number of
already invoiced orders.

There is one single transition (HO), corresponding to the handing over of
the order, considered in its whole. It can �re only if there are enough products
within the stock. This condition is expressed by means of the valuation of the
arc between ST and HO. It then removes the number of tokens corresponding

8 Annie Choquet-Geniet, Pascal Richard

Fig. 2.6. A solution to the problem of one order for one reference, using a structural

approach.

to the ordered quantity from the place ST, one token from PO, and adds one
token to the place IO (�gure 2.6).

In the �rst solution, the modi�cation of the order does not a�ect the topology
of the net, but is taken into account by a new marking. In the second approach,
the modi�cation of the order induces the modi�cation of the net which has thus
to be recompiled after any modi�cation of order. Furthermore, in our second
approach, we can express only the fact that an order can be invoiced, but if it
can not, we have no information about the missing amount of products.

One Order - Several References

Here again, we enlarge the system by taking several references into account.
Our assumption about the composition of an order is the same as in the previ-
ous section and we still suppose that the ordered quantity for each reference is
known before the design of the net is carried over.

The only change brought to the net of �gure 2.6 concerns the modelling of
the stock. Again, the place ST is split up into n places (if there are n di�erent
references). The arcs between STi and HO are valuated by the amount of the
i-th reference which is ordered (see �gure 2.7).

Fig. 2.7. A solution for the problem of one order, with two references.

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 9

In the next section, which deals with case 2, we will focus on this second
approach. However, whatever the chosen approach, we will have to use a high
level net. The structure of the net when using the �rst approach, would be
more complex: we would have used �fos for modelling the �le of pending orders;
then, for each order, we would start to hand it over, but, in the case of non
satisfaction, we would have to restore the stock, and then to delete the order
from the �fo. This would have required the use of several inhibitor arcs. For the
sake of simplicity, we have chosen to present only the solution corresponding to
the second approach here.

2.2.3 Several Orders

In this section we complete the model in order to take into account several orders.
As in the previous section, orders and products are completely de�ned at the
modelling step.

Question 7: How to model several orders ?

Answer: We consider di�erent references of products, which di�er by the or-

dered quantities and, for each kind, there may exist several instances. In the

sequel, order will mean << kind of order >>. Since an order is modelled through

the structure of the net, the associated subnet must be repeated for every or-

der. New places << pending >> and << invoiced >> must be created and also a

new transition for changing the state of the order and consuming products

in the stocks. Consider two orders: order 1 requires three products A and

two products B, and order 2 requires one product B. As shown in �gure 2.8,

adding a new order increases the size of the net with two places, one tran-

sition and at most n+ 2 arcs (where n is the number of di�erent products).

The size of the net is polynomially bounded in the number of orders.

Fig. 2.8. Low-level net modelling the system with two orders.

This modelling approach leads to the problem of the growth of the size of the
net. It cannot be avoided with classical low-level nets since every order is mod-
elled by new places, transitions and arcs. The size can be decreased using high

10 Annie Choquet-Geniet, Pascal Richard

level nets such as coloured nets [6]. Coloured nets have been de�ned in order to
give a concise model even for complex systems, while keeping the same expres-
siveness (i.e. every coloured net can be unfolded into a classical low-level net).
It allows to merge all identical parts of a low-level net into only one structure.
We now only present basic coloured net concepts used hereafter.

A coloured net is de�ned by a �nite set of colours, let us denote it C. A
colour can also be considered as a data type (e.g. a type of order). Colours are
totally ordered and every token is coloured. To every transition is associated C

or a subset of C, and to every arc is associated a function which models colour
changes when a transition is �red (in practice the arcs are only labelled by the
name of the functions). As example we give three classical functions that are
widely used (n is the number of colours in the set C, and the symbol j denotes
the modulo operation):

Identity: Id < Colouri >=< Colouri >

Successor: Succ < Colouri >=< Colouri+1jn >

Predecessor:Prec < Colouri >=< Colouri�1jn >

Figure 2.9 gives an example of a coloured net with the set of colours:

C = f< r >;< b >;< j >;< v >g

Note that the ordering of colours is very important. For instance < b > is
the successor of < r >, and conversely < r > is the predecessor of < b >.
Furthermore the functions Successor and Predecessor behave cyclically: precisely
Succ < v >=< r >, and Prec < r >=< v >.

(a) (b)

Fig. 2.9. (a) Structure of a coloured net with the set of colours C=f<r>,,
<j>,<v>g; (b) The net after the �re of transition t1 with colour <r>.

We describe next the behaviour of a coloured net. We �rst de�ne the enabling
process of a transition and then the �ring process . Let t be a transition and
c be a colour belonging to the set associated to t, we check that the required
coloured tokens (computed with functions using the colour c) are available in
every input place of t. If it is not the case, we proceed in the same way with an

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 11

other colour associated to t until the previous condition holds for a colour a. We
say that the transition is enabled for the colour a. The �ring is processed in two
steps. First tokens in the input places of t are removed using the functions on
the arcs connecting the places to t, and then coloured tokens are added to the
output places of t according to the functions labelling output arcs of t.

Consider �gure 2.9, we �rst show that the transition t1 is enabled using the
functions on arcs connected to the input places of t1. For p1 Id < r >=< r >,
since p1 contains a token with colour < r >, the condition is satis�ed. For p2,
Succ < r >=< b >, since such a token is available in p2, the condition is also
satis�ed. As consequence t1 is enabled for the colour < r >. During the �ring,
Id < r > is removed from p1, Succ < r > is removed from p2, Id < r > is added
to p3 and Prec < r > is added to p4.

Question 8: How to model the products and their stocks ?

Answer: The places ST1,...,STn are merged into one single place ST. One

colour is created per product. The colour can be viewed as the name of the

product. The stocks are modelled by tokens of the corresponding colours and

quantities.

Question 9: Question: How to model the orders ?

Answer: Here again places PO1,...,POq are merged into one single place PO

and one colour is associated to each order. An order becomes a coloured

token. All these tokens must have a di�erent colour. The set of pending or-

ders (coloured tokens) are stored in the place PO. The quantities of products

required in the orders are de�ned by a function which gives the number of to-

kens in the colours associated to the products. The places modelling invoiced

orders are also merged into a place IO. For instance, consider an order <1>

of three units of product A and two units of product B, and an order <2>

which only requires one unit of product B. The function (Qty) modelling

these orders is de�ned as follow:

Qty <1> = <A><A><A>

Qty <2> =

Functions, as the set of colours, are not directly integrated within the struc-
ture of the net (i.e. places, transitions and arcs). But they are rather stored
within a table associated to the net. In the following O denotes the set of colours
associated to the set of orders, and P denotes the set of colours associated to
the set of products. Figure 2.10 gives the whole model of the system.

As said before every coloured net can be unfolded into an equivalent low-level
Place/Transition net. The unfolded net of the net presented �gure 2.10 is exactly
the net of �gure 2.8.

Question 10: Can we schedule the orders with a given policy ?

12 Annie Choquet-Geniet, Pascal Richard

Qty

<1> <A><A><A>

<2>

Fig. 2.10. Coloured net modelling the order system, with its table of functions.

Answer: In the net of �gure 2.10, all orders that can be invoiced correspond

to the selected colours that enable the transitions. Scheduling orders is equiv-

alent to schedule enabled transitions. Moreover, if a given order cannot be

satis�ed because there are not enough products in stock, it must be delayed

in order to pass to the next order with respect to the policy. So we need �rst

to test that the selected order can be satis�ed. If not, it is delayed, else it is

invoiced.

But as explained before, such tests cannot be done with low-level nets. And
since coloured nets have the same modelling power as low-level nets, then it
cannot be done with them. To implement a scheduling policy of orders with our
approach, we need an extension of Petri nets including inhibitor arcs and �fos
or priority nets. But these extensions increase the expressiveness power, and
as consequence, most of the classical properties that can be veri�ed on classical
Petri nets fall indecidable (the model becomes as powerful as a Turing machine).

2.3 Analysis and Speci�cation of Case 2

Up to now the system studied is fully static: all orders and products are known
at the modelling step. We now extend the previous case to model the ow of
orders and the entry ow of products in stocks. Without loss of generality, we
only consider that new orders can arrive in the system, but not new references.
For the other cases, the principles would be the same and are left to the reader.

2.3.1 Entry Flow in Stocks

Question 11: How to model an entry ow in stocks ?

Answer: We need a special transition that can be enabled without any condi-

tion. Such transitions are called source transitions , since they do not have

any input place. Source transitions are always enabled and can �re at any

time. So for modelling entry ow of products in stocks, we add a source

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 13

transition, noted later EFO, connected to the place ST. The set of colours

that labelled the transition is the subset of colours dedicated to the products.

The function associated to the corresponding arc is Identity. So that at any

time every colour of P satis�es the enabling condition and the corresponding

product is added to the stock.

Question 12: How is the entry ow controlled ?

Answer: The entry ow is nondeterministic, in the sense that the reference

introduced in the stock is not controlled. If the source transition �res three

times with colour <A> then three coloured tokens are added to the Stock.

But the selected colour is always chosen arbitrarily. With these nondermin-

istic choices, the analysis deals with all possible behaviours of the system.

Figure 2.11 gives the model of the entry ow of products.

Fig. 2.11. Order systems with entry ow of products EFP.

2.3.2 Flows of orders

Question 13: How to model new orders ?

Answer: As for the entry ow of products, we need a new source transition.

It is connected to the place that holds pending orders. In practice the order

system can deal with an in�nite behaviour and so with an in�nite set of or-

ders. Distinguishing the orders requires to generate one new colour that must

not exist in the system. This source transition, noted later EFO, is in fact a

generator of new colours in order to deal with an in�nite number of orders.

Furthermore quantities of products indicated in the order are de�ned by ex-

tending the Quantity function (noted Qty in the net). The table containing

the function Qty can become in�nite.

But the unfolding of a Coloured Net with an in�nite set of colours produced
an in�nite set of places and transitions. So the graph of the unfolded net is
in�nite. It has been shown that the expressiveness of the model becomes in that
case equivalent to a Turing machine. But in practice the number of orders in the
system can be kept �nite by destroying invoiced orders. As a consequence the
set of colours and the size of the function Quantity are �nite.

14 Annie Choquet-Geniet, Pascal Richard

Question 14: How to cancel pending orders or destroy old invoiced ones ?

Answer: In that case we have to consume tokens. The only way to proceed

is to use a sink transition (i.e. a transition without output place). When

a sink transition �res tokens are removed from the input places. Since no

output place exists no new token is generated. Removed tokens from the entry

places have been destroyed. So in the �nal model we need two sink transitions,

DIO and CO, for modelling respectively the deleted invoiced orders and the

cancelled orders.

The choices of cancelled orders or destroyed invoiced orders are nondeter-
ministic. We include all feasible behaviours of the order system. When an order
is destroyed, the table of function Qty must be updated and the corresponding
removed colours can be reused later. Figure 2.12 gives the �nal model of the case
study 2.

Fig. 2.12. Final model.

2.4 Validation of the Speci�cation

Petri nets analysis consists in verifying two kinds of properties: behavioural
properties and structural properties [1,8]. Behavioural properties depend on the
initial marking (initial distribution of tokens in the places) and by opposition
structural properties focus on the structure without any initial marking consid-
eration. Generally solving these problems requires exponential time and space,
even for simple net structures [3]. The main behavioural properties are reachabil-
ity, liveness, boundedness, deadlock-freeness. And the main structural properties
are invariants and structural liveness, structural boundedness and also structural
deadlock-freeness.

Obviously when coloured Petri nets are used the objective is not to unfold
the net because of it usually enormous size (even if it is always possible). Some

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 15

speci�c algorithms have been developed. But in order to be clear, we do not
detail such speci�c solutions and we only present the analysis of a low-level net.

Behavioural properties can be checked by building the reachability graph
from the Petri net. In this graph vertexes are markings and edges are labelled
by transitions that change one marking into another. If the system has an in�nite
number of di�erent states, then the reachability graph is in�nite.

The reachability property consists in verifying that a marking (a given state
of the system) is reachable from the initial marking. The problem is very complex
to solve, the decidability proof has held for ten years. So deciding if a marking is
reachable can be decided by searching the according vertex in a �nite reachability
graph (otherwise a complex algorithm is required). The path from the initial
marking to the searched marking produces a feasible �ring sequence that proves
the reachability. Liveness consists in verifying that every transition can always
�re in the system. More precisely, there is for every reachable marking a �rable
sequence, containing at least once each transition. This property ensures that
every operation (modelled by transitions) can always be performed in the system.
So there is no partial deadlock of the system. If the number of di�erent markings
is �nite, then a live net has a strongly connected reachability graph. That graph
property can be checked in O(n2) in the size of the reachability graph (which
usually has itself an exponential size in comparison with the size of the net).
For instance the net of �gure 2.12 is live. The third property is boundedness:
there is no place that can have an in�nite number of tokens while playing the
token game. In order to have an in�nite number of tokens in a place, there
must be an in�nite �ring sequence producing them. So an unbounded net has an
in�nite reachability graph. But it has been shown that a reachability graph is
in�nite if and only if, it has in�nite paths. These paths can be cut by identifying
repetitive �ring sequences. The obtained graph is called the Karp's graph [7] and
is �nite for every net. If the number of tokens increases while �ring a repetitive
sequence, then the places in the corresponding vertex is marked by a the symbol
!. So verifying boundedness consists in searching this symbol in the Karp's
graph. For instance the net of �gure 2.9 is bounded and has a �nite reachability
graph. The last behavioural property presented is deadlock-freeness. A marking
is deadlocked if it enables no transition. So in a deadlock-free system, there
always exists a transition to �re (i.e. an operation to do). That property can be
checked using the �nite reachability graph: it is suÆcient to check that there is
no leaf in the graph (i.e. a vertex without any successor).

Structural properties are studied by using an algebraic representation of the
net. From the structure of the net an incidence matrix can be de�ned (as in a
classical graph theory). Markings are vectors which are indexed on the set of
places. The number of transitions in a �ring sequence can be stored in a charac-
teristic vector. Let us denote C the incidence matrix, X a characteristic vector,
and M0 the initial marking of the net. Every reachable marking M veri�es the
marking equation: M = M0 + CX . Every reachable marking satis�es a linear
algebraic system of equations [5]. But take care, the converse is not true: com-

16 Annie Choquet-Geniet, Pascal Richard

puting M and/or X using the marking equation can lead to spurious solutions
(i.e. markings and sequences that are not feasible on the net while playing the
token game). As a consequence many algorithms working on structural proper-
ties are semi-decision algorithms (verifying a necessary or a suÆcient condition
but not both).

Invariant (also called semiows) refers to stable situations in the net be-
haviour whatever the initial marking is. The weighted sum of tokens in a set
of places is called place invariant. It is always the case for a set of places mod-
elling renewable resources or mutual exclusion sub-systems. Computing place-
invariants can be easily done by solving the system t

CX = 0 (i.e. the kernel of
the transposed matrix C in classical linear algebra) with the Fourier-Motzkin's
algorithm [2]. For instance in �gure 2.6 the places pending and invoiced consti-
tute a place-invariant since no orders are introduced or deleted in the system.
Another kind of invariant deals with repetitive �ring sequences (that lead from
one marking to the same marking). These invariants based on transitions can
be easily computed by solving the system CX = 0. Since it is the dual system
of the place invariant one, it can be solved by the same algorithm. Structural
properties can then be eÆciently semi-decided using classical linear programme
solvers.

2.5 The Natural Language Description of the

Speci�cations

2.5.1 Case 1

An order is de�ned by a set of references of products. For each reference is
known the ordered quantity, inventory levels and its status which are natural
numbers. The status of the order is de�ned by two di�erent variables upon
natural numbers. The �rst variable contains one if the order is not invoiced, and
zero otherwise, and the second variable stores one if the order is invoiced and zero
otherwise. The system provides an operation (invoice order) that can be executed
if, and only if, every reference is available according to the ordered quantity.
When the operation is completed, the operation decrements the pending order
variable, increments the invoiced order variable and updates the quantities in
stocks.

2.5.2 Case 2

The ordering system is an extension of case study 1, that allows dynamic ar-
rivals and cancellations of orders, and dynamic arrivals of raw of materials (i.e.
products in the stock). The de�nitions of orders and stocks are the same as in
case 1. The system provides four new operations to input new products in the
stock, to input new orders, to cancel orders not yet invoiced, and to delete in-
voiced orders. The operation introducing products in stock increases the value of

2 Petri Nets: a Graphical Tool for System Modelling and Analysis 17

the variables associated to these references. The operation which introduces new
orders de�nes a set of references and their ordered quantities. Both cancellation
operations decrease the status variables, as de�ned in case 1. An operation that
invoices an order is de�ned per order in the same manner than in case 1.

2.6 Conclusion

Through this chapter, we have outlined the strong points as well as the weak-
nesses of the Petri nets. When the order ow is completely de�ned at the mod-
elling step, Petri nets provide a very nice and concise modelling of the system.
The graphical support is very helpful, since it gives a good synthetic view of
the system in its whole, points out the di�erent objects which constitute it, and
describes their interactions.

The structural approach is here completely suitable to the problem, since it
uses the �ring rule in order to model the invoicing of orders. Moreover, the model
we get with this approach can be analysed, using all the analysing facilities of
Petri nets. The limits of this approach come from the fact that the orders have
to be speci�ed in the model. If we want to consider any possible order, that
is to consider the order as a parameter, our previous approach does not work
anymore, and we stumble to the main weakness of the model: the test to zero
fails, so does any comparison between markings. Thus we have to change the
power of the model, and to integrate inhibitor arcs. But we get then the power
of a Turing Machine, which forbids any analysis of the model.

Thus, the data/action approach can be used only in order to play the token
game (in our case, the process will end, so does the token game). Now, if we
take an order ow into account, we use a high level coloured net, here again,
any analysing facility fails. But we can get an instantaneous description of the
system, at any time, and perform some analysis or play the token game, from
the state of the system at that time. Finally, we did not present any solution
including the scheduling of the orders, since it would have required the use of �fos
or of priorities and inhibitor arcs, and would have supposed a rather complicated
net, dedicated to the deletion of the unsatis�ed order, and the restoration of the
stock, after a partial handing over of products for a �nally non satis�ed order.

As a general conclusion, Petri nets seem to be rather suitable for the mod-
elling of the �rst case (since the invoicing of order is directly modelled by the
�ring rule), but for the second case, their weaknesses (no comparison between
markings, the structure cannot dynamically be modi�ed) are too important, and
we cannot provide a good solution, unless we use an extended model with the
power of the Turing machine. Thus, for the second case, the modelling with Petri
nets is not really suitable.

References

1. Choquet-Geniet A., Vidal-Naquet G. (1993) Petri nets and parallel systems. Ar-

mand Colin (in french)

18 Annie Choquet-Geniet, Pascal Richard

2. Colom J.M., Silva M. (1991) Convex Geometry and Semiows in P/T Nets.

A Comparative Study of Algorithms for Computation of Minimal P-Semiows.

in:Advances in Petri nets'90, 79{112, Springer Verlag

3. Desel J., Esparza J. (1995) Free-Choice Petri nets, Cambridge Tracts in Computer

Science nÆ 40, Cambridge University Press

4. Design/CPN, tool Homepage: http://www.daimi.au.dk/designCPN/

5. David R., Alla H. (1992) Petri nets and Grafcet, Prentice-Hall

6. Jensen K. (1997) Coloured Petri nets, Basic concepts, Analysis Methods and Prac-

tical Use. Monographs in Theoretical Computer Science, Springer Verlag

7. Karp R.M., Miller R.E. (1969) Parallel program schemata, Journal of Computer

System Sciences 3:147{195

8. Murata T. (1989) Petri nets : Properties, Analysis and Applications, Proceedings

of the IEEE 77(4):541{580

9. Peterson J.L. (1981) Petri net theory and the modelling of systems, Prentice-Hall

10. Petri C.A. (1962) Kommunikation mit Automaten. (German) Schriften des

Rheinisch-Westf�alischen Institutes f�ur instrumentelle Mathematik an der Univer-

sit�at Bonn, Nr. 2, Bonn

