
International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60.

Taxonomy for
Human Error and System Fault Recovery

from the Engineering Perspective

Francis JAMBON
LISI / ENSMA1

Téléport 2, BP 109
86960 Futuroscope cedex, France

+33 5 49 49 80 70
Francis.Jambon@ensma.fr

1 Laboratory of Applied Computer Science of the National School of Engineers in Mechanics and Aerotechnics (Laboratoire

d'Informatique Scientifique et Industrielle de l'École Nationale Supérieure de Mécanique et d'Aérotechnique).

ABSTRACT

This paper deals with human error resistance. In the first
part of it, a short state-of-the-art of human error
resistance, i.e. error prevention and error handling is
presented. Then, error handling, which is usually divided
into four sequential tasks – error detection and
explanation, recovery planning and execution – is
described.

The second part of this paper put emphasis on error
recovery, which is our main object of study. First and
foremost, through an example, we can see what makes
the distinction between forward and backward error
recovery in current taxonomy. Then the limits of this
distinction are going to be highlighted.

In the third part of this paper we propose and illustrate,
from the engineering perspective, our own taxonomy of
error recovery suitable for real-world and dynamic
systems.

Keywords

Human error recovery, system fault recovery, taxonomy,
human-computer interaction, man-machine interface
engineering.

INTRODUCTION

Although human errors are often observed in human-
computer interaction, they are usually overlooked or
ignored by most interface designers. Poor support for
human error management in interactive system
development may be an explanation of the designers’
attitude. In this paper, taking into account designer’s
point of view, our aim is to support design for error
recovery practices in interactive system development
thanks to models.

We all know that “to err is human”. So, designers must
support human error resistance functions into the user
interface life cycle. In this article, we propose a new
taxonomy of human error and system fault recovery in
order to help practitioners to choose among recovery
alternatives.

RELATED WORK

Human Error

Human Error has been widely studied from the cognitive
science perspective [2, 11, 16, 17] as well as from the
applied science perspective [14, 18]. The definition of
“human error” is an important topic, but cannot be
reviewed here. For an overview on this topic, we suggest
reading Reason [17].

One of the most significant result of human error studies
– from the designer's point of view – is the Human
Reliability Analysis [7]. As an example, the rather old
THERP method [18] focuses on the evaluation of the
Human Error Probability of nuclear power plant control
rooms. Other contributions suggest that – extended –
interface specification notations can be used to detect a
breakdown during human-computer interaction [6].

With these results, designers can evaluate human error
rates and their consequences on the system state, at the
very first step of the design process. So, at this stage,
human error resistance strategies can be defined in order
to prevent or limit the consequences of human errors.

Error Resistance Strategies

Error resistance can be achieved by means of two
strategies: error prevention and error handling [12, 20].
Error prevention can result from forcing functions [15],
operator’s selection, or training. But error prevention will
never get rid of all human error occurrences. That’s why
error handling – sometimes called error correction or
error management – has to be actually supported in
interactive systems.

Human error resistance is mostly supported – when that
is the case – by user interface designers through
prevention. Designers ought to follow the prevention
strategy, for self-evident reasons. Unfortunately, they
usually deal with human error only with the prevention
strategy. And yet, scientific work [9], as well as aircraft
accident report [13] stress the need for handling. In the
former report, the authors criticize the fact that the
human-system interface has given the crew too little

International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60..

chance to correct their disastrous error. Now, let’s
explore error handling.

Error Handling

As an operator, handling an error or a system fault, can
be achieved by following four sequential tasks as shown
figure 1: Error detection, i.e. the user needs to know that
an error occurred ; Error explanation, i.e. the user must
understand the nature of the error – do note that for the
undo function, the user does not always need to know
that ; Error recovery planning and execution, i.e. the user
has to counteract the effects of the error [21]. Some
systems have embedded auto-correction features [12]: in
such systems, the error handling is achieved by the
system which is in charge of the handling tasks –
 diagnosis and recovery.

Error detection and explanation are the first steps –
diagnosis – of error handling. They are primarily related
to the interface presentation. In this paper, we focus on
error recovery execution which involves the definition of
the recovery procedures. Although error detection and
explanation, and recovery planning are not our topic, we
assume that they are compulsory in a perspective of
design for error. For self-evident reasons, error recovery
is void if the user cannot neither detect nor understand
the error. Figure 1 summarizes the handling process of
human error and highlights our topic of study.

Error

Error detection
Error explanation

Error diagnosis

Error recovery

Planning
Execution

Our topic of study

Figure 1: The error handling process. Adapted from [21]

FORWARD VERSUS BACKWARD ERROR RECOVERY

Dix, Finlay, Abowd, & Beale [4] make a distinction
between backward and forward error recovery. This
distinction is now commonly used in interactive system
development. However, we suggest that this distinction is
not as useful as it could be from the designer’s point of
view. So we propose our own taxonomy.

Backward Error Recovery

Backward error recovery is an attempt to restore the
system state after an error has occurred. Backward
recovery can be considered as the only real “recovery”
function, since the unexpected effects of error are totally
removed. Backward error recovery can be seen as a
function to go back in time. As a result, novice users
usually use it as a fail-safe learning method. According to

Yang – in [9] – there are three kinds of backward error
recovery commands: undo, cancel, and stop.

• The Undo function is the most famous one [3, 19],
and most editors – for texts or graphics – implements
an undo function. Unfortunately, the undo function is
also the most complex one. Designers have to do with
the presentation, the granularity, the scope, and the
range of the undo function. Moreover, current
implementations of the undo function seem to fall
short of user expectations [10].

• The Cancel function is used to abandon commands
under specification. For example, a user can cancel
the typing of an e-mail message if the addressee has
just entered the user’s office. However, as for the
undo function, the cancel function has to deal with its
scope: the user must know which command(s) are
concerned by the recovery.

• The Stop function is used to terminate the process
under execution. For example, a user can make the
choice to stop a long printing command when he
realizes that many users are waiting for the printer.
However, the stop function is not always
implemented as a pure backward recovery: in the
former example, the user can stop the printing
command while the printer is working, so, some
pages may have been printed uselessly.

Forward Error Recovery

In forward error recovery, the user has to execute
unexpected tasks to recover the fault. Usually the final
result – the system state – is non-optimal. For example, if
you break a dish plate, you have to use glue to recover
your error. Of course, the final dish plate is not as nice as
the unbroken one. In civil aviation, a lot of emergency
procedures [1] are forward recovery procedures. In these
procedures the “error” is a system fault. The result is
generally a non-optimal state of the aircraft: after an
engine fire, the latter can remain inoperative for the
flight.

Forward recovery is commonly the only way to recover
from technical failure or human error in critical systems
like nuclear power plants, chemical plants, aircraft,
vessels, etc. In these systems, side-effects of many
actions cannot be easily removed. As Lenman & Robert
[9] say “Forward error recovery is an important topic,
and more research is needed concerning these questions”.
We do so.

Limits of this classification

Dix et al. [4] use the example of an house of cards to
show the difference between backward and forward error
recovery: “for example, in building a house of cards, you
might sneeze whilst placing a card on the seventh level,
but cannot undo the effect of your misfortune except by
rebuilding”.

Erroneous task granularity

Dix et al. suppose that you cannot undo the fall of your
house of card after placing a wrong card. Obviously Dix
et al. consider that the erroneous task is placing one card
on the house. But that’s not so obvious, if we consider

International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60..

that the real task is building an eight level house of cards.
You may place a card in a wrong way, and then, the
house falls down. Now collect all the fallen cards: that’s a
backward error recovery because you have undone the
effect of your error. The system is exactly in the state
before the beginning of your task “building the house of
cards”. Rebuilding the house of cards is now considered
as a new task occurring after the recovery. So, the
difference between backward and forward recovery is
relative to the granularity of the erroneous task.

Additional cost of error

It is assumed that backward error recovery – undo,
cancel, & stop – is the best way for a user to recover from
an unexpected error. Clearly, pressing the “undo” button
after a typing error is easy. Yet to achieve this goal, the
user must retype the right letter, word, paragraph, or why
not, the document. The cost of an error is clearly the cost
of the correction task, as well as the cost of the correctly
executed task. So, many users may prefer to use forward
error recovery in order to move the system to a non-
optimal state but at a lower cost. This is a critical topic
from the designer's point of view in dynamic systems, in
which the cost of the recovery is, at first, Time.

Time

In dynamic systems, the recovery functions are not
always available. In these systems, Time is also an
interesting dimension. In order to illustrate the
importance of time, let us study the example of a crew
who has forgotten to extend the landing gear of the
aircraft. The crew can easily correct this mistake for a
few minutes by activating the extension of the gear. A
few minutes later, the aircraft is at a too low altitude, so,
the crew must follow a go-around procedure. Finally, the
aircraft lands on the runway – without it’s gear being
extended – and no recovery is possible.

PROPOSED TAXONOMY

Based on these limitations, we proposed, in a recent
publication [8], three dimensions of analysis – Error
Additional Cost, System State Degradation, and Time –
in order to help designers to understand the critical issue
of error recovery from the operator's point of view. Our
approach is now to define a novel taxonomy of error
recovery, suitable for both static and dynamic systems.

System State Modification

We first propose a new distinction between forward and
backward error recovery based on the expected state of
the system.

Initial, Final, and Erroneous states

Three states from the operator's point of view are here
below defined:

• The Initial State is the system’s state before the error.

• The Final Expected State is the system’s state that
the operator wants to achieve thanks to his action.

• The Erroneous State is the system’s state resulting
from the operator’s error or system fault.

We assume that backward error recovery must be viewed
as an attempt to restore the system state after an error or a
failure occurrence. In other words, backward error
recovery can be seen as a way to go back in time. As a
consequence, all actions that restore the system’s state
after an error occurrence – not only undo and cancel
functions but also complex or planned actions – are
backward error recovery actions. Our definition of
backward error recovery differs from the previous one [4,
9] on that point. As an example, the stop function cannot
always be considered as a backward error recovery in our
taxonomy, because the achieved state is sometimes closer
to the final expected state than to the initial one as shown
in the former printer example – nearly all of the pages
may have been printed.

On the contrary, all actions which are an attempt to reach
the final expected state must be considered as forward
error recovery actions. So, complex planned action as
well as simple atomic actions can be forward recovery
actions. As an example, the correct performance of a
previously forgotten action – an error can be due to a lack
of action – is a forward error recovery in our taxonomy.
Do note that to get the final expected state, the operator
may execute a backward recovery action – undo for
example – and then performs the correct action.
However, these two sequential tasks cannot be
considered as a forward error recovery because the
effects of the error are first counteracted by a backward
error recovery.

So, the transitions between the three states – initial, final
expected, and erroneous – define the notion of error
recovery as shown on figure 2.

Initial
State

Final
Expected

StateCorrect Action

Erroneous Action

Backward
Recovery

Forward
Recovery

I F

E

Erroneous
State

Figure 2 : Error Recovery versus System State

System state degradation

In real-world systems, the recovery – backward or
forward – may not be perfect. In other words, neither the
initial state nor the final expected state may not be
reached from the erroneous state. As an example, the fire
in an aircraft engine may be extinguished by the crew,
but the engine often remains, then, inoperative for the
flight. So, let us introduce a new distinction between
perfect and imperfect recovery as shown on figure 3.

The imperfect recoveries introduce the notion of
approach state for both initial and final expected states.
These states are the result of an unsuccessful attempt to
restore the initial state or to get the final expected state.
In the former example of the dish plate, the use of glue to
recover the error – the action of breaking the dish plate –
is an imperfect attempt to restore its initial state –

International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60..

 unbroken. Sometimes it is difficult to find which is the
closest state of the reached state further to the imperfect
recovery action. In this case, we suggest defining an
intermediate state and not distinguishing backward and
forward recovery.

First, let us study the failure of a aircraft landing gear
system – as shown on figure 4 – to illustrate the concept
of system state degradation. In our example, a failure in
the extension of the landing gear occurs while the crew is
attempting to extend the gear. Do note that this failure
occurs during the operator's action, but must be
considered as a system fault – in action – because the
operator's goal cannot be achieved due to the system.

I' F'

Landing gear
retracted

Crew extend landing gear

Crew extend landing gear

but system
 fails

I F

E

Landing
gear in
middle
position

Landing gear
extended

Crew retract landing gear Crew gravity extend

landing gear

Landing gear
extended

but jammed

Landing
gear

retracted
but

jammed

Figure 4 : Landing gear failure example

On the one hand, in order to recover the system's fault,
the crew can extend the gear by gravity. This is an
imperfect forward error recovery since the gear is
extended, but also jammed in this position. The gear
cannot be retracted – in our example – but this
approached final state is although a safe state to land the
aircraft.

On the other hand, the crew can retract the gear. This is
an imperfect backward error recovery because the
landing gear is retracted, but jammed in this position. We
assume that this action is still possible. Then, the crew
cannot get a normal extension of the landing gear: this is
an approached initial state.

Sudden system fault recovery

In case of a sudden system fault, or unwanted action, any
final expected state cannot be defined. As a consequence,
if we follow our taxonomy, only perfect and imperfect
backward error recovery are possible as shown on
figure 5.

Do note that the system fault which occurs during
an action – for example the landing gear fault –
must be distinguished from a sudden system fault
– as an other example, an engine fire. A final
expected state can be defined in the latter
example and not in the former.

Static versus Dynamic Systems

A static system, is defined as a system which state cannot
be modified by time. In such systems, the erroneous state
can only be modified by an operator's action. As an
example, word processor softwares are static systems: the
user can correct his error whenever he wants – if no
action is performed in the meantime.

Whereas the state of a dynamic system may be altered by
time. In such systems, as aircraft, vessels, etc., the error
state can be worsened by time. Consequently, the
recovery functions may not be always available. As an
example, a fire in an aircraft engine may be recovered by
a correct use of the fire extinguisher. If the procedure is
not correctly followed, the aircraft may suffer from an
engine separation…

I'

Landing gear
retracted

Crew extend landing gear

Crew forgot to extend

landing gear

I F

E

Landing
gear not
extended

Landing gear
extended

E

Aircraft reach
low altitute

Cre
w e

xte
nd

 la
nd

ing
 g

ea
r

E

Aircraft lands
on runway

Go-arround

Landing gear
extended

Landing gear not extended and
aircraft at a too low altitude

Aircraft crashed
on runway

Landing gear
retracted but waste of

time and kerozene

Figure 6 : Forgotten landing gear extension example

So, the notion of transient error state which represents a
state that can be altered by time is here defined. In order

Imperfect
Backward Recovery

Imperfect
Forward Recovery

I' F'

Initial State Final Expected State

Correct Action

Erroneous Action

Perfect
Forward

Recovery

I F

E

Erroneous
State

Perfect
Backward

Recovery

Approach
Initial State

Approach Final
Expected State

Figure 3 : Error Recovery versus
System State Degradation

E

Imperfect Backward
Recovery

I'

Initial
State

System Failure or Erroneous ActionI

Erroneous
State

Perfect Backward
Recovery

Approach
Initial State

Figure 5 :System Failure Recovery

International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60..

to illustrate this notion, the figure 6 uses back the
example of the crew who forgot to extend the aircraft
landing gear.

Do note that in dynamic systems, the error can be
triggered by time. Indeed, a forgotten action – for
example extending the landing gear – becomes an error
after a few minutes – when the aircraft reaches low
altitude.

Recovery tasks

The operator’s point of view makes out two types of
recovery tasks:

• The Generic recovery tasks are undo, cancel, and
stop functions. These tasks are well-known by the
operator and are usually not difficult to perform. No
planning is required and their cost, in terms of time,
cognitive or conative [5] load, etc. is usually low. We
would like to add to this category the forgotten
actions performed by the operator after noticing the
missing.

• Needless to say that Planned recovery tasks require
planning for the operator. The cost of these tasks
result usually high for the operator. However, the cost
is not always higher than backward error recovery
because the total cost of a backward error recovery is
the cost of the recovery in addition to the cost of the
correctly executed task [8].

This distinction between generic and planned recovery
tasks is a engineering-driven distinction, i.e., it is related
to the availability or not of atomic recovery functions –
undo, cancel, and stop – in the man-machine interface. A
more cognitive point of view can be taken here,
considering that the recovery tasks are related to the three
levels of control of human actions of Rasmussen's
simplified human operator model [16]. Doing so makes
out three types of recovery tasks: skill-based, rule-based,
or knowledge-based recovery.

DISCUSSION

The novel distinction between recovery alternatives can
be put side-by-side to the former distinction between
forward and backward recovery. This is the topic of the
first part of this discussion section. Then, in a second
part, some limits of our approach are going to be
highlighted.

Taxonomy mismatch

In our approach, we define a new taxonomy for error
recovery. The two main dimensions – forward/backward
& generic/planned – of our taxonomy are independent.
So, from the operator’s point of view, four types of
recovery can be listed. Let us study the two recovery
functions which are here below defined:

• Generic Backward Recovery in which we can find the
well-known undo and cancel functions.

• Planned Forward Recovery generally used to recover
from system failure or to correct some tiny errors.

As an example, let us study a typical task in a graphical
editor like MacDraw®. The user's task is to create a
perfect circle. In our example, the user forgets to press

the shift key before drawing, so the circle is in fact an
oval. On a one hand, the user can choose to manage the
error by the undo function of MacDraw®, and re-draw
the circle. This is a generic backward error recovery. On
the other hand, the user can choose to turn his oval into
an approximate circle by direct manipulation. This is a
 imperfect – planned forward error recovery. The system
state is not optimal – the circle is not perfect – but
enough satisfactory for the user's need.

We assume that these two error recovery functions are
the more often recovery functions met in real world.
They are shown on figure 7 on a gray tint background.
We suppose that the former taxonomy of human error
recovery [4, 9] merge the main dimensions of our novel
taxonomy: forward/backward & generic/planned, i.e., it
regards planned forward recovery as forward recovery
and generic backward recovery as backward recovery.
So, this former taxonomy is a subset of the proposed one.
And yet, the latter is backward-compatible with the
former.

However, the two other recovery functions listed below
are critical issues in the design of real-world human-
computer interfaces:

• Generic Forward Recovery gathering, for example,
the performance of forgotten actions.

• Planned Backward Recovery often used to recover
from sudden system failure.

In order to illustrate our position, the figure 7 reveals
some typical examples of human error and system failure
recovery in accordance with the main dimensions of our
taxonomy.

Planned

Generic

Backward Forward

Undo,
Cancel

Sudden system
fault recovery

Performance
of forgotten

actions

System fault (in
action) recovery,
Low-cost error

recovery

Figure 7 : Example of the two main dimensions
of our error recovery taxonomy

Limits

First and foremost, our approach is only an engineering
view on human error and system fault recovery. We
admit that this is an important limitation of the taxonomy.
However, our approach is a bottom-up view of human
error, i.e., error is only studied from the engineering
perspective of the availability of recovery functions. No
assumptions are done about cognitive aspects of
detection, explanation of error, nor recovery planning.
Our contribution deals with the execution of recovery.
This view is directly related to the engineering process of

International Conference on Human-Computer Interaction in Aeronautics (HCI-Aero'98),
Montréal, Canada, 27-29 may 1998. p. 55-60..

man-machine systems: it should help designer to explore
recovery alternative through available recovery functions.

Another point limits our contribution. We consider that
the operator goal is always to recover from the error.
Sometime, due to lack of time in dynamic systems, the
operator may want not to recover from an error in order
to save time, i.e., to live with error.

CONCLUSION & FUTURE WORK

As a conclusion, we hope we have provided designers a
new way to understand the operators’ point of view in
error recovery. We assume that these dimensions can be
used to evaluate system failure as well as human error
recovery alternatives of safety-critical systems. By doing
so, we hope that this taxonomy can ensure more safety in
the conception of the Human Computer Interface of these
systems. Obviously, these dimensions can also be used in
the design process of non-critical desktop computer
interfaces in order to evaluate the real benefits of
recovery.

This article deals with a taxonomy of human error and
system fault recovery from the engineering perspective.
This taxonomy is a first attempt to enrich the classical
human reliability analysis step of the critical man-
machine interface engineering process. The next step of
our approach, which is in progress, is to identify the basic
patterns – in the dialogue controller of man-machine
interfaces – that implements recovery functions. Then,
we will make links between the taxonomy and these
patterns.

ACKNOWLEDGMENTS

The author would like to acknowledge the participants of
the "User Interfaces for All" ERCIM workshop whose
questions inspired this article. Many thanks to Sylvie
Ferrés for the English review of the article and Jean-Marc
Robert for his encouragement leading me to write it.

REFERENCES

1. Airbus Industrie. Flight Crew Operating Manual
A320. 1992.

2. Amalberti, R. La conduite des systèmes critiques.
Presses Universitaires de France, Paris, 1996.

3. Dix, A., Mancini, R. and Levialdi, S. The cube -
extending systems for undo, in Proc. Eurographics
Workshop on Design, Specification, Verification of
Interactive Systems (Granada, Spain, June 4-6, 1997),
Eurographics, Springer-Verlag, 473-495.

4. Dix, A.J., Finlay, J., Abowd, G. and Beale, R.
Human-Computer Interaction. Prentice Hall, 1993.

5. Dorwell, J. and Long, J. Towards a conception for an
engineering discipline of human factors. Ergonomics.
32, 11 (November 1989), 1513-1535.

6. Gray, P.D. and Johnson, C.W. Supporting error-
driven design, in Proc. Eurographics Workshop on
Design, Specification, and Verification of Interactive
systems (DSV-IS'96) (Namur, Belgium, 5-7 June,
1996), 207-228.

7. Hollnagel, E. Human reliability analysis: context and
control. Academic Press, London, UK, 1993.

8. Jambon, F. Error Recovery Representations in
Interactive System Development, in Proc. Third
Annual ERCIM Workshop on "User Interfaces for
All" (Obernai, France, 3-4 november, 1997), 177-182.

9. Lenman, S. and Robert, J.-M. A framework for error
recovery, in Proc. International Ergonomics
Association (IEA'94) (Toronto, Canada, August 15-
19, 1994), International Ergonomics Association, 6,
374-376.

10. Lenman, S. and Robert, J.-M. Investigating the
granularity of the Undo function in human-computer
interfaces. Applied Psychology: An international
review. 43, 4 (special issue on Human Errors) (1994),
543-564.

11. Leplat, J. Erreur humaine, fiabilité humaine dans le
travail. Armand Colin, Paris, France, 1985.

12. Lewis, C. and Norman, D.A. Designing for Error in
User Centered System Design / New Perspectives on
Human-Computer Interaction. Lawrence Erlbaum
Associates, 1986. pp. 411-432.

13. Ministère de l'équipement des transports et du
tourisme. Commission d'enquête sur l'accident
survenu le 20 janvier 1992 à l'Airbus A320 F-GGED
près du mont Sainte-Odile (Bas-Rhin). Journal officiel
de la République française, édition des documents
administratifs, n°31, Rapport final ISSN 0242-6773,
26 mars 1994.

14. Nicolet, J.-L., Carnino, A. and Wanner, J.-C.
Catastrophes ? Non merci ! La prévention des risques
technologiques et humains. Éditions Masson, Paris,
France, 1990.

15. Norman, D.A. The design of every day things.
Doubleday Currency, New York (NY), USA, 1990.

16. Rasmussen, J. Information processing and Human-
Machine Interaction : An approach to cognitive
engineering. Elsevier Science, Amsterdam, The
Netherlands, 1986.

17. Reason, J. Human error. Cambridge University Press,
New York (NY), USA, 1990.

18. Swain, A.D. and Guttmann, H.E. Handbook of human
reliability analysis with emphasis on nuclear power
plant applications. Nuclar Regulatory Commission
(NUREG), Final report NUREG/CR-1278F, August
1983.

19. Thimbleby, H. User Interface Design. ACM Press,
1990.

20. Van der Schaaf, T.W. Prevention and Recovery of
Errors in System Software, in Proc. Workshop on
Human Error and System Development (Glasgow
University, Scotland, 19-22 March, 1997), Glasgow
Accident Analysis Group, GAAG TR-97-2, 49-57.

21. Zapf, D. and Reason, J.T. Introduction: Human Errors
and Error Handling. Applied Psychology: An
International Review. 43, 4 (1994), 427-432.

