
On-line Scheduling of Real-Time Distributed Computers With Complex
Communication Constraints

Pascal RICHARD, Francis COTTET, Micha¨el RICHARD
Laboratory of Applied Computer Science (LISI)

National School of Engineers in Mechanics and Aeronautics (ENSMA)
Téléport 2 - BP 40109
F-86961 Futuroscope

frichardp ,cottet,richardmg@ensma.fr

Abstract

We consider the scheduling of periodic tasks running on
distributed computers. Every execution of a task must meet
its deadline. Response time analysis of the tasks is used
to prove the schedulabilty of hard real-time distributed sys-
tems according the on-line priority rules that schedule the
processors and the network. Its main advantage is to take
into account the precedence dependencies of the schedules
of the tasks on the processors and the messages sent on the
network(s). Past works have addressed the issue of tasks re-
lated by asynchronous communication constraints with the
senders and the receivers working at the same rate. In this
paper we study more general relations among tasks when
the rates of dependent tasks are not equal. We call such
relations generalized communication constraints. Usually
distributed systems are scheduled using a synchronization
protocol and an on-line scheduling algorithm by processor.
We present in this paper a graph theoretical approach to
this schedulability analysis. Our algorithm transforms com-
plex communication relations into classical ones, so that
the classical scheduling analysis can be fully applied. That
transformation is independent of the architecture of the dis-
tributed systems and no assumption is made on the synchro-
nization protocol considered.

1. Introduction

Hard real-time systems are computing systems that must
react within precise time constraints to events coming from
the environment. Typically, distributed computers con-
trolling a physical devices or processes involve following
basic functions: at periodic intervals and responding to
different scenarios by sending signals to actuators with a
time-bound. A hard real-time system is programmed as

multitask software that is a set of synchronized, commu-
nicating tasks sharing critical resources [4] [5][21]. Every
task is statically assigned to a processor at the design step,
arrives periodically in the system and must met their dead-
lines. In most of hard real-time systems, due to the strict
deadlines that must be met, communications among tasks
are implemented in a completely deterministic manner. In
other words, computational activities cannot be executed
in arbitrary order but have to respect some communication
relations defined at the design stage. Past works have
addressed the issue of tasks related by simple communi-
cation relations. So, if a task�i has to communicate the
result of its processing to another task�j , these tasks have
to be scheduled in such a way that the execution ofk

th

instance of the task�i precedes the execution of thek th

instance of the task�j . A more general problem concerns
tasks related by generalized precedence relations wheren

instances of a task can precede one instance of another task
or one instance of task precedesm instances of another task.

On the other hand, the use of real-time scheduling
algorithms based on the temporal task parameters not only
helps in producing a valid sequence, but may also aid the
temporal validation of the application, either by analytic
checks or by simulation. Usually real-time scheduling is
based on preemptive priority-based policies and a set of
periodic tasks. Scheduling decisions are taken on-line by
every active sub-system (processor or network interface).
A task �i is schedulable if its worst-case response time
(time between the arrival and the completion of the task) is
lower than or equal to its deadline (relative to its arrival).

When distributed systems are considered, the worst-case
response times of the tasks are mutually dependent because
of the messages exchanged by them. The analysis must
take into account the synchronization protocol of the

communicating tasks [23, 22], and also the scheduling
policies of the messages on the network. It is assumed
hereafter that the messages are sent at the end of the tasks
and received at their beginning. The network is a shared
resource for every communicating task. As a consequence
no optimal and on-line scheduling policy can be found for
scheduling a distributed system. Since only worst-case
execution times are known for the tasks, it is not possible
to compute the exact sending dates of the messages on the
network. As a consequence some priority inversions can
occurred if a message is sent before another that would
block a higher priority task.

The holistic analysis is a well-known response time
analysis of a hard real-time distributed systems [24]. The
dependencies between them are taken into account while
computing the worst-case release jitters of the tasks and the
messages. Results are known for the fixed-priority policy
[9, 10, 11, 17, 27], FIFO and round-robin policies [7, 8],
and also for the earliest deadline first [18, 19, 20]. Different
kinds of networks have also been studied in this context
[1, 6, 15, 16, 25, 26, 28]. Furthermore, some results have
been extended when offsets are considered on task arrivals
[14, 13, 24].

We study in this paper the holistic analysis of complex
communicating tasks having different periods in a dis-
tributed system. We call the corresponding precedence
relations: generalized precedence constraints. As we will
see, the holistic analysis only focus to the underlying
precedence constraints generated by the asynchronous
communications. We prove that the problem dealing with
generalized precedence constraints can always be trans-
formed to an equivalent problem with classical precedence
constraints among tasks working at the same rate. The
remainder of the paper is organized as follows: section 2
presents the background of the holistic analysis, section
3 formally defines the generalized precedence relations
among tasks. In section 4 we propose a transformation
technique based on the precedence graph unfolding, that
allows to use directly the holistic analysis.

Notations:

� �i is the task numberi.

� Ci is the worst-case computation time of�i on each
release.

� Di is the deadline of�i, measured relative to the arrival
time of the task.

� Ti is the period of the task�i.

� Ji is the worst-case release jitter of the task�i (i.e. the

worst-case delay between the arrival of a task and its
release).

� Bi the worst-case blocking time of�i, according to a
given concurrency control protocol.

� Ri is the worst-case response time of the task�i (i.e.
the worst-case delay between the arrival of a task and
its completion).

� prec(i) is the set of predecessors of�i in the prece-
dence graph.

2. Holistic analysis background

Tindell and Clark have proposed a nice Response Time
Analysis method for hard real-time distributed systems [27]
called the holistic analysis. In their approach, the network
is viewed as an additional processor that executes fictitious
tasks that model the messages. In that way, communication
dependencies are modeled as precedence constraints among
this new set of tasks. Their approach is also useful for deal-
ing with distributed systems based on several networks. The
principle of the method is to compute iteratively the worst-
case release jitters of the tasks as the maximum worst-case
response times of the predecessors in the precedence graph.
In that way when the tasks are released, their input messages
have been received by the node executing them. Computa-
tion stops when the values computed in two successive iter-
ations are equal (i.e. when the fix point of the system has
been reached). The system of equations is the following:

1 � i � n

8
>>><
>>>:

J
(0)
i = 0

R
(k)
i = ResponseT ime

�
i; J

(k�1)
i

�

J
(k)
i = max

j 2 prec(i)

�
R
(k)
j

�

Ri = R
(k)
i = R

(k�1)
i

The method always converges if the functions ”Re-
sponseTime” are enforced to be non-decreasing functions
of the release jitters. In the remainder of the paper we
consider that the messages are fictitious tasks and that
the network is an additional fictitious processor (possibly
several additional processors if the distributed system
uses more than one network). The response time function
computes the worst-case response time of a given task
and takes into account the higher priority tasks. So to
every processor is associated a specific non-decreasing
response-time function that takes in parameters the number
of a task and the current release jitters of the tasks running
on that processor.

In that way communication relations are modeled by a
set of precedence relations. Results in the literature assume
that the communicating tasks work at the same rate. But
more complex asynchronous communicating relations can
be found when not all the instances of a task are submitted
to the precedence relations. For instance a task can be re-
leased when a set of values has been put in the buffer by
an another task. In the next section, we present a general
technique to handle such complex but common precedence
relations in real applications.

3. Complex Communication Relations

3.1. Generalized Precedence Constraints

The real-time distributed tasks are described by a di-
rected acyclic graph, where the tasks and the messages are
modeled by the vertices and precedence relations among
them are modeled by the edges. Since communications are
assumed to be asynchronous, to every communication is as-
sociated two precedence constraints (i.e. two edges): one
from the sender to the message and another from the mes-
sage to the receiver (messages are considered as tasks). This
precedence graph defines a partial order on the task set. If
the task�i is connected by a path in the precedence graph
to the task�j then�i � �j . It means that every execution
of the task�j must be preceded by an execution of the task
�j . Figure 1 illustrates the model of a hard real-time dis-
tributed system by a directed acyclic graph that describes
the precedence relation for tasks and messages.

Com puter A Computer C

Com puter B

Network

Figure 1. Model of a hard real-time distributed
system.

In the case of a simple precedence constraint (dependent
tasks work at the same rate), all the tasks belonging to a
connected component of the precedence graph must have
the same periods. Because if the periods of the tasks are

different, sooner or latter both tasks will run at the lowest
rate. As a consequence the task with the shortest period will
miss its deadline (we do not consider cyclical asynchronous
buffers of messages [4]).

Some applications require more involved communica-
tion relations. Figure 2 gives two examples where the rates
of the communicating tasks are not equal. We say that the
precedence relations are generalized. In order to distinguish
the classical communication relations to the complex ones,
the last ones are represented by dotted arrows. As indi-
cated figure 2 in case 1 (kTi = Tj ; k 2 N) k instances
of a task can precede one instance of a task and in case 2
(Ti = kTj ; k 2 N) one instance of a task �i precedes k
instances of an another task �j . Figure 3 presents the Gantt
chart associated to these both cases. There is furthermore
more complex cases if k is no longer an integer but a ra-
tional number. In these latter cases, the generalization of
the techniques used for simple communication constraints
to analyze schedulability of the tasks (as in the holistic anal-
ysis) is not straightforward.

τ
i

τ
j

k τ
i

τ
j

1/k

case 1 case 2

temperatu re
measurem en t

task

Average
temperatu re

over 4 samp les
calculation

task

4

exam ples

Volum e
control

task
V=f(T,P)

1/10

T i < Tj T i > Tj

temperatu re
measurem en t

task

Press ure

measurem en t
task

Figure 2. Two cases of generalized prece-
dence relations among tasks.

A simple precedence constraints �i � �j is satisfied if,
and only if, at every date, the number of instances of � i that
have been finished is greater than or equal to the number
of instances of �j that have been started. When generalized
precedence constraints are considered, the condition on the
rates of dependent tasks must be verified, as described in
the following definition.

Definition 1 Let Bi(t) (resp.Ei(t)) be the number of in-
stances of �i that have been started (resp. finished) at the
date t, then the generalized precedence constraint � i � �j

is satisfied if, and only if:

Ei(t)� Ti � Bj(t)� Tj 8t 2 N

i

j

i j

T i=10 Tj=20
1/2

i

j

i j

T j=10Ti=20
2

Figure 3. Gantt charts of cases presented on
figure 2.

3.2. Related Precedence Relations

Similar precedence constraints to these presented in the
previous subsection have been studied in the literature. We
report the two most important that are closely related to
our generalized precedence relations. Then, we focus on
the difference between these two kinds of precedence con-
straints, on the one hand, with those that are considered in
this paper, on the other hand.

In [12] is studied the basic cyclic scheduling problem
with linear precedence constraints. The objective of the ba-
sic cyclic scheduling problem is to compute optimal fre-
quencies of generic tasks in the earliest schedule (asymp-
totic behavior of the system). Tasks are subjected the
strongly connected precedence graph, where the vertices
model tasks and edges model linear precedence relations.
No resource constraint is considered (infinite number of
processors). In this study, the difference of iteration in-
dices between the execution of two tasks subjected to a
linear precedence constraint is not constant (as in classi-
cal precedence relations), but a linear function of the ex-
ecution indices. If we consider two tasks �i and �i con-
nected by a linear precedence relation (e), and the respec-
tive cyclic executions of the tasks are h�i; 1i; :::; h�i; ni and
h�j ; 1i; :::; h�j ; ni, then instances in precedence are given
by:

h�i; a(e)� k + b(e)i � h�j ; c(e)� k + d(e)i

where � denotes the classical precedence relation and
a; b; c, and d are integers associated to the edge e. The
problem is solved using an expansion of the linear prece-
dence graph into a classical precedence graph. We will use
the same approach to solve our problem with acyclic gener-
alized precedence graph.

In [2] is studied the feasibility problem of (acyclic)
dataflow graphs used in signal processing algorithms. As
usual, vertices model recurring tasks and edges model
buffers used to exchange data between tasks. A task can
produce or consume several data simultaneously in a buffer.
As a consequence, the precedence relation between tasks
are generalized precedence constraints. But the buffer in [2]
has a specificity: a threshold amount that denotes the num-
ber of messages that must be present in a buffer in order to
allow the next task to execute. As a direct consequence, the
feasibility problem (schedulability and respect of the upper
bound on buffer sizes) is NP-hard in the strong sense. In
practice, the threshold amount of a buffer lead to introduce
offsets of the tasks before consuming the queued data. It
is well-known that feasibility problem for recurring tasks
with offsets is NP-hard in the strong sense [3], even for one
processor real-time systems.

A generalized precedence is a particular case of linear
precedence constraint and the graphs consider in this paper
are acyclic while those consider by [12] are cyclic. These
differences lead to different expansion of graphs. On the
other hand, dataflow graphs consider in [2] lead exactly to
generalized precedence constraints studied in this paper, but
the threshold amounts associated to the buffers lead to com-
puter intractability for the feasibility problem. It will not be
the case in our study.

4. Generalized precedence graph unfolding

In order to validate a hard real-time distributed system
with generalized communications, we show in this section
that every graph that models the system with generalized
precedence constraints can be unfolded into a graph con-
taining only simple precedence constraints (i.e. such that all
dependent tasks have the same rate). In that way, the holis-
tic analysis can be applied without any change to analyze
the schedulability of the hard real-time system. The method
is presented in two steps: first we present the unfolding of
a generalized precedence constraint, and in second we deal
with the complete graph unfolding. Complexity issues are
later discussed. A generalized precedence constraint can be
modeled by a set of simple precedence constraints.

4.1. Unfolding one precedence constraint

Every task �i is duplicated by ni tasks �1i ; :::; �
n
i that are

simply called hereafter the duplicates. The duplicates have
the same computation times than the original tasks. The n th

execution of the duplicate � ki models the ((n� 1)ni + k)th

execution of the task �i. Obviously we fix that:

�
k
i � �

k+1
i 1 � k � n� 1

We now study the precedence relation between the du-
plicates of different tasks. Theorem 1 establishes a relation
between the rates of the tasks and the number of duplicates.

Theorem 1 Let ni and nj be the number of the duplicates
of �i and �j respectively, the generalized precedence con-
straint �i � �j can be modeled by a simple precedence
constraint between two duplicates if, and only if, it exists
ni 2 N

�

; nj 2 N
� such that:

ni � Ti � nj � Tj = 0

Proof: we consider two duplicates of the tasks �i and �j ,
respectively � ki and � li . We give a necessary and sufficient
condition of existence of a simple precedence constraints
between respectively � ki and � li (�

k
i � �

l
i):

- The lth instance of �j can start after the kth instance of �i:

k � Ti � l� Tj � 0 (1)

- the (l � 1)th instance of �j can start after the kth instance
of :

(k � 1)� Ti � (l � 1)� Tj � 0 (2)

- the lth instance of �j cannot start after the (k � 1)th in-
stance of �i:

(k � 1)� Ti � l � Tj � 0 (3)

Grouping (1), (2) and (3), we can state that (� k
i � �

l
i) if,

and only if:

Ti > k � Ti � l� Tj � max(Ti � Tj ; 0) (4)

The previous relation must hold for every instance of � k
i

and � lj . Since by definition of the duplicates the nth instance
of �kj (resp. � lj) models the ((n� 1)ni+ k)th instance of �i
(resp. ((n � 1)nj + l)th instance of �j) then (4) must also
be verified for these numbers:

Ti > ((n� 1)ni + k)� Ti � ((n� 1)nj + l)� Tj

� max(Ti � Tj ; 0) (5)

Then it follows that (5) is verified if, and only if, it exists
ni 2 N

�

; nj 2 N
� such that:

ni � Ti � nj � Tj = 0

Theorem 1 allows computing the numbers of duplicates.
Using the necessary and sufficient condition (5), the sim-
ple precedence among the duplicates can be computed by
theorem 2.

Theorem 2 Let �i � �j be a generalized precedence con-
straint, ni and nj be the numbers of duplicates of the tasks

�i and �j . Then it induces ni simple precedence constraints
if Ti > Tj:

8k 2 f1::nig; �
k
i � �

ak
j ; ak = b(k � 1)Ti=Tjc+ 1

nj simple precedence constraints otherwise:

8k 2 f1::njg; �
bk
i � �

k
j ; bk = dkTj=Tic

Proof: Let � ki and �
l
j be two duplicates of the tasks �i and

�j . We consider two cases:

� If Ti > Tj , we need to compute ak the number of
duplicates of �j (i.e. �akj) that is preceded by the kth

duplicate of �i. In the proof of theorem 1 it is shown
that if, and only if:

Ti > ((n� 1)ni + l)Ti � ((n� 1)nj) + ak)Tj

� Ti � Tj

Since niTi � njTj = 0, then the previous expression
becomes: Ti > kTi � akTj � 0. It follows that the
unique integer solution is: ak = b(k � 1)Ti=Tjc+ 1.

� If Ti � Tj , in the same way we compute the number
bk of the duplicate of �j that precedes the kth duplicate
of �j . By theorem 1, � bki � �

k
j if, and only if:

Ti > ((n� 1)ni + bk)Ti � ((n� 1)nj + k)Tj � 0

Using the same reasoning than in the previous case, we
obtain that the unique integer solution of the previous
expression is: bk = dkTj=Tie .

We detail an example of the unfolding method. Let � i
and �j be two tasks with respectively periods 30 ms and 40
ms. The number of duplicates according to the theorem 1
follows: ni � 30 � nj � 30 = 0 . The minimal solution
within integer numbers is ni = 4 and nj = 3 (the solutions
are linked to the LCM of the periods as we will latter see).
Notice that Ti < Tj , then applying theorem 2 we obtain 3
simple precedence constraints:

k = 1; b1 = d1� 40=30e = 2) �
2
i � �

1
j

k = 2; b2 = d2� 40=30e = 3) �
3
i � �

2
j

k = 3; b3 = d3� 40=30e = 4) �
4
i � �

3
j

Figure 4 presents the generalized precedence constraint
and the according unfolded graph.

4.2. Unfolding a graph

We now detail the unfolding of a complete generalized
precedence graph using the technique just presented. With-
out loss of generality, we only consider acyclic graph, since
if there is a circuit in the graph then an execution of a task
will depend of itself. We first need some definitions.

iτ jτ

2
iτ 1

jτ

3

iτ 2

jτ

4
iτ 3

jτ

3/4

Figure 4. A generalized precedence con-
straint and the corresponding unfolded
graph.

Definition 2 Let p be an edge connecting �i to �j in the
graph G, the height of p, noted H(p) , is:

H(p) = Ti=Tj

Definition 3 Let � be a path in the graph G. The height
of � is defined by the product of the heights of the edges
belonging to � :

H(�) =
Y
p2�

H(p)

From these definitions, it can be easily shown a strong prop-
erty of the generalized precedence graph.

Property 1 Let �i and �j be two vertices of the generalized
precedence graph then every path � from �i to �j has the
same height H(�) = Ti=Tj .

Proof: We proceed by induction on the length of an arbitrary
path �ie1e2:::ek�j connecting �i to �j (noted hereafter �k).
Base: if k = 0, then �0 = �i�j and then H(�0) = Ti=Tj .
Step: Assume that the induction hypothesis is verified for
�k. At step k+1, the path is �k+1 = �ie1e2:::ekek+1�j . By
definition of the height of a path:

H(�k+1) =
Ti

Te1

�
Te1

Te2

� :::�
Tek

Tek+1

�
Tek+1

Tj
= H(�k)

As a consequence, every circuit of a precedence graph
has a height equal to 1. But every execution of a task be-
longing to a circuit need to be preceded by itself. So this
task will never be released and cannot meet its deadline.
Clearly, a graph can be unfold if, and only if, the precedence
graph contains no circuit. This property can be checked in
polynomial time.

The relation given in the theorem 1 must be verified for
every edge of the graph G in order to allow the unfolding
process. So we must solve the system of equations �(G):

�(G) : niTi = njTj �i � �j ; ni 2 N
�

; nj 2 N
�

Theorem 3 proves that every acyclic generalized prece-
dence graph can be unfolded. It also proves how to com-
pute the numbers of duplicates while considering the whole
precedence graph. Its proof is based on the fact that the
number of duplicates can be computed while considering
an arbitrary spanning tree belonging to the graph G. We
illustrate these principles through an example: the compu-
tation of the minimal number of duplicates for the graph
given in figure 5. There is two paths joining �1 to �5. It is
easy to see that the edge (�1; �4), corresponding to the equa-
tion of �(G): n1T1 = n4T4 (5), is a linear combination of
the others equations:

n1T1 = n3T3

n2T2 = n4T4

n3T3 = n5T5

n4T4 = n1T1

So (5) is not useful to solve �(G), and repeating this pro-
cess leads to a spanning tree belonging to G.

1τ 2τ

3τ 4τ

5τ

1τ 2τ

4τ

5τ

3τ

Figure 5. A generalized precedence graph
and a spanning tree of G.

Theorem 3 Every acyclic generalized precedence graph
can be unfolded and the minimum solution of �(G) is given
by:

ni =
lcm(T1; :::; Tm)

Ti
1 � i � m

Proof: Without loss of generality, we assume the graphG to
be a connected graph. If it is not the case, then every con-
nected component would be separately studied. Let m be
the number of vertices in G, and n be the number of edges,
we verify n � m � 1, since the graph is assumed to be
connected. Consider two paths joining the vertices � i and
�j , then by the property 1, they have the same height. So

it exists in �(G) an equation that is a linear combination
of the others. Deleting the corresponding equation let un-
changed the solutions of �(G) . Repeating this process for
every path joining couple of vertices, then n�m+1 edges
will be deleted. Let G be the obtained graph by deleting
redundant equations, it has exactly m vertices and m � 1
edges. So G is a spanning tree of G. We also verify that
�(G) , �(G) . Let X = (ni) be an integer vector, since
�(G) has m variables and m� 1 equations, then every in-
teger vector �X; � 2 N is also a solution (i.e. the solutions
are proportional). Then it follows that the minimal integer
solutions of �(G) are given by:

ni =
lcm(T1; :::; Tm)

Ti
1 � i � m

In order to complete the unfolding process, we must de-
fine the parameters of the duplicates. It directly follows
from theorem 2 and 3 that S and S � are equivalent (i.e the
same deadlines, workloads and precedence relations among
the instances of the tasks).

Theorem 4 Let S = f�i(ri; Ci; Di; Ti); 1 � i � mg

be a set of tasks, � be an partial order on S, ni be the
number of duplicates of the tasks �i; 1 � i � m, and
S
� = f�

k
i (r

k
i ; C

k
i ; D

k
i ; T

k
i); 1 � i � m 1 � k � nig

be a set of tasks such that:

1 � i � m; 1 � k � ni

8
>><
>>:

r
k
i = ri + (k � 1)Ti
T
k
i = niTi

D
k
i = Di

C
k
i = Ci

then S under the partial order � is schedulable if, and only
if, S� is schedulable under the unfolded partial order.

According to the generalized precedence graph of figure
3 and theorem 4, then a feasible schedule is presented figure
6.

4.3. Complexity issue

The complete algorithm of the method is presented fig-
ure 7. The next theorem gives the complexity of the unfold-
ing process.

Theorem 5 Let G = (T; P) be an arbitrary generalized
precedence graph then complexity of the unfolding algo-
rithm is:

O(jT j
X
i2T

ni + jP j

X
(i;j)2P

min (ni; nj))

where T is the set of vertices, P is the set of edges of G, and
ni (resp. nj) is the number of duplicates of �i (resp. �j).

1
iτ

2
iτ

1
jτ

3
iτ

2
jτ

4
iτ

3
jτ

Figure 6. Gantt chart of dependent tasks of
figure 3.

Proof: The algorithm contains two exponential-time parts:
duplicates creation, on one hand, and precedence constraint
construction, on the other hand. Duplicates are created in
O(jT j

P
i2T ni). In the last part of the algorithm, since

ni � Ti = nj � tj for every edge (�i; �j) in the precedence
graph, then we verify that Ti > Tj) ni < nj . The number
of iterations done in the loops are dependent of the number
of the duplicates. So the complexity of the second part of
the algorithm is O(jP j

P
(i;j)2P min (ni; nj)).

Thus the unfolding process leads to a pseudo-polynomial
time algorithm assuming that the values ni are entries of
the problem. But these values can by huge since they are
directly dependent of the lcm of periods. The worst-case
scenario is obtained if the periods are prime numbers (but
is never the case in practical applications). We must notice
that the NP-Hardness of the unfolding of generalized prece-
dence graph is an open problem.

No assumption on the architecture of the distributed sys-
tem is made, then the holistic analysis can be applied with-
out any changes. Notice that if tasks are first release simul-
taneously in the initial task set, then it is not the case after
the generalized precedence graph unfolding. So, functions
calculating the worst-case response times of the duplicates
during the holistic analysis must explicitly take into account
of the release dates.

4.4. Example

We present an example of the unfolding process on the
simple distributed architecture with two computers and one
network. Figure 9 presents the generalized precedence
graph and the mapping of the tasks for this the application.
Four tasks run on the first computer: �1; �7; �8 collect sam-
ples from sensors and �2 prepares messages to send on the
network. In the second computer, �3 collects messages and
dispatches data to the other tasks, namely �4; �5; �6; �9, and

Input : graph),(PTG = /* T : set of edges, P : set of vertices */

Output : graph),(VES = /* E : set of edges, V : set of vertices */
Begin

∅== VE
)(

..1
i

ni
TLCMH

=
=

/* create duplicata */
For Each Ti ∈ Do /* For every Edge of T */

i
i T

H
n =

For ink ..1= Do

{ }kiEE ∪=
End For

End For Each
/* Create simple communication constraints */
For Each Pe ∈ Do /* For every vertice of P */

i=Input_Edge(e) ; j=Output_Edge(e)

If ji TT > Then

For ink ..1= Do

(){ }ak jiVV ,∪=
End For

Else

For jnk ..1= Do

(){ }kb jiVV ,∪=

End For

End If

End For Each
End

()
1

1
+











 −
=

j

i
k T

Tk
a









=

i

j
k T

kT
b

Figure 7. The unfolding algorithm.

�10. Figure 9 gives the periods of the tasks and the number
of duplicates after the unfolding process of the generalized
precedence graph of figure 8.

The lcm of the periods is 800 and the total number of
tasks (duplicates) to be considered in the schedulability
analysis is 364. The unfolding process requires less than
one second of computation on a Personal Computer (Pen-
tium III). Schedulability analysis can be easily done us-
ing the holistic analysis since it runs in pseudo-polynomial
time.

τ
1

τ
2

τ
3

τ
4

τ
5

τ
6

τ
10

τ
7

τ
9

τ
8

50

50

1/25
1/5

m
0 m essage on the netw ork

Com puter 2

Com puter 1

Figure 8. Example of a simple distributed ap-
plication.

5. Conclusion

We have presented a method to handle complex asyn-
chronous communication relations between tasks in a hard
real-time distributed system in order to prove its schedula-
bility using the holistic analysis. The method is based on
the unfolding of the generalized precedence graph underly-
ing to the complex communication relations. A new set of
tasks and a new set of messages are then created such that
all dependent tasks have the same period. This new task set
is shown to be equivalent from the schedulability point of
view and can be directly use to validate the application with
the classical holistic analysis.

Since our method only focus on the precedence relations
among the tasks and the messages we made no assumption
on the architecture of the hard real-time distributed system,
on the scheduling policies of the processors or the network,
on the concurrency control protocol and also on the syn-
chronization protocol of the messages. All these parameters
of the distributed system are managed in the holistic analy-
sis that uses in entry the problem defined by our algorithm.
The method can be applied on single processor problems as
well as on complex distributed systems.

In some particular cases, the generalized precedence
graph unfolding is not necessary. For instance if we con-
sider a generalized precedence constraint between two tasks
mapped on the same processor and having proportional pe-
riods, then one can enforce the scheduling policy to obey the
precedence relation . Such result can be achieved by modifi-

tasks initial period (ms) #duplicates
�1 16 50
�2 16 50
�3 16 50
�4 16 50
�5 16 50
�6 16 50
�7 80 10
�8 400 2
�9 800 1
�10 800 1
m0 16 50

Figure 9. Number of duplicates for the appli-
cation of figure 8.

cation of the task parameters without creating any duplicate
of the initial task . So a perspective of this work is to search
new conditions in order to avoid to generalized precedence
graph unfolding.

References

[1] N. C. Audsley and A. Grigg. Timing analysis of arinc 629
databuses for real-time applications. proc. ERA Avioncs
Conference, 1996.

[2] S. Baruah, S. Goddard, and K. Jeffay. Feasibility concerns
in pgm graphs with bounded buffers. proc. Int. Conf. on
Engineering of Complex Computer Systems, pages 130–139,
1997.

[3] S. Baruah, R. Howell, and L. Rosier. Feasibility problems
for recurring tasks on one processor. Theoretical Computer
Science, 118:3–20, 1993.

[4] G. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling, Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[5] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Real-
Time Scheduling. Herms Sciences (in french), 2000.

[6] A. Ermedahl and H. H. M. Sjdin. Response-time garantees
in atm networks. proc. IEEE Real-Time System Symposium,
1998.

[7] L. George and P. Minet. A fifo worst-case analysis for a hard
real-time distributed problem with consistency constraints.
proc. Int. Conf. on Distributed Computing Systems, pages
441–448, 1997.

[8] J. M. A. Jean-Marie. Timing analysis of scheduling policies:
a trajectory based model. INRIA Research Report 3561,
1998.

[9] M. Joseph and P. Pandya. Finding response-time in a real-
time system. BCS Computer Journal, 29(5):390–395, 1986.

[10] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Har-
bour. A practitioner’s handbook for real-time system analy-
sis. Kluwer Academic Publishers, 1993.

[11] J. P. Lehoczky. Fixed priority scheduling of periodic task
sets with arbitrary deadlines. proc. IEEE Real-Time System
Symposium, pages 201–209, 1990.

[12] A. Munier. The basic cyclic scheduling problem with lin-
ear precedence constraints. Discrete Applied Mathematics,
64:219–238, 1996.

[13] J. C. Palencia, J. Garcia, and M. Harbour. Best-case analy-
sis for improving the worst-case schedulability test for dis-
tributed hard real-time systems. proc. IEEE Euromicro Real-
Time Systems, 1998.

[14] J. C. Palencia and M. Harbour. Schedulability analysis for
tasks with static and dynamic offset. proc. IEEE Real-Time
System Symposium, 1998.

[15] P. Pedro and A. Burns. Worst-case response-time analysis
of real-time sporadic traffic in fip networks. proc. IEEE Eu-
romicro Real-Time Systems, 1997.

[16] M. Sjodin and H. Hansson. Analysis multimedia in real-
time atm networks. proc. IEEE Real-Time Technology and
Application Symposium, 1998.

[17] M. Sjodin and H. Hansson. Improved response time analy-
sis calculations. proc. IEEE Euromicro Real-Time Systems,
1998.

[18] M. Spuri. Earliest Deadline Scheduling in Real-Time Sys-
tems. PhD Thesis, Scuola Superiore S. Anna, Pisa, 1995.

[19] M. Spuri. Analysis of deadline scheduled real-time systems.
INRIA Reseach Report 2772, 1996.

[20] M. Spuri. Holistic analysis for deadline scheduled real-time
distributed systems. INRIA Reseach Report 2973, 1996.

[21] J. A. Stankovic, M. Spuri, K. Ramaritham, and G. Buttazzo.
Deadline Scheduling FOr Real-Time Systems: EDF and Re-
lated Algorithms. Kluwer Academic Publishers, 1998.

[22] J. Sun. Fixed-Priority End-to-End Scheduling in Distributed
Real-Time Systems. PhD Thesis, University of Illinois at
Urbana-Champain, 1997.

[23] J. Sun and J. Liu. Synchronization protocols in distributed
real-time systems. proc. Int. Conf. on Distributed Comput-
ing Systems, 1996.

[24] K. Tindell. Fixed-Priority Scheduling of Hard Real-Time
Systems. PhD Thesis, University of York, 1994.

[25] K. Tindell, A. Burns, and J. Wellings. Analysis of hard
real-time communications. Real-Time Systems Journal,
9(2):287–300, 1995.

[26] K. Tindell, A. Burns, and J. Wellings. Calculating controller
aera network (can) message response-time. Control Engi-
neering Practice, 3(8):163–1169, 1995.

[27] K. Tindell and J.Clark. Holistic schedulability analysis for
distributed hard real-time systems. Microprocessors and Mi-
croprogramming, March 1994.

[28] S. Zhang and A. Burns. Garanteeing synchronous message
sets in fddi networks. Workshop on Distributed Computer
Control Systems, pages 107–112, 1995.

