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Abstract: We focus on the o�-line scheduling of periodic real-time task systems where
the �rst release date of some tasks can di�er from the others. We �rst determine the
length of the sequences to construct o�-line, which was uninvestigated in the general
case. The proposed method is based on the simulation of a Petri net and allows the
extraction of optimal schedules regarding several criteria for a chosen set of tasks (e.g.
minimizing response time, maximizing importance, ...)
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1. INTRODUCTION

1Real-time systems, most of the time dedicated
to process control, are characterized by temporal
parameters, induced by the dynamic of the con-
trolled process. We assume that these parameters
are a priori known, i.e. we are only interested in
deterministic real-time systems, since they are the
only systems for which the respect of the temporal
constraints can be guaranteed.

Two approaches are usually considered in order
to solve the scheduling problem. The on-line ap-
proach: a scheduling policy is implemented within
the scheduler; and the o�-line approach: a pre-
run-time schedule is stored in a table used by a
dispatcher. The scheduling algorithms used on-
line are based on priorities, mostly derived from
the temporal parameters (e.g. Rate Monotonic,
Earliest Deadline, Least Laxity), and they are
polynomial in time (Leung and Merrill, 1980; Liu
and Layland, 1973)(see (Stankovic et al., 1995)
for a survey). Under some speci�c assumptions
(e.g. for Earliest Deadline, independent tasks or
precedence constrained tasks), some of them are
optimal in the following sense: a scheduling pol-
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icy is said to be optimal if, for a given task
system, either the policy computes a feasible 2

schedule, or there is no feasible schedule for the
task system. The scheduling problem becomes
NP-hard (Mok, 1983) when shared resources are
involved (e.g. shared memory or control terminal).
The main diÆculty comes from the blockages due
to the fact that a task can wait for a resource
locked by a lower priority task. If speci�c resource
management protocols (Baker, 1991; Chen and
Lin, 1990) are used, the blockage of a task is
bounded by the longest critical section of the lower
priority tasks. This implies that, in order to ana-
lyze the schedulability of a task system, the dura-
tion of the critical sections of the tasks have to be
increased of the duration of the longest blockage
they could su�er. But the temporal parameters
may then become unrealistic, this implies that the
more the number of task interactions by means of
shared resources increases, the more the eÆciency
of feasibility tests of on-line schedulability de-
creases. A second diÆculty comes from the lack of
optimal on-line algorithms for task systems where
critical resources are involved.

2 A feasible schedule is an in�nite schedule where all the

temporal constraints are met



O�-line scheduling methodologies have been stud-
ied in order to validate highly constrained task
systems. Those approaches are either exhaustive
(Petri net modeling (Choquet-Geniet et al., 1996;
Grolleau, 1999), branch and bound technique
(Bratley et al., 1973; Xu and Parnas, 1990)),
or stochastic (simulated annealing, genetic algo-
rithms,). A completely deterministic schedule can
then be implemented. O�-line approaches could
seem less exible than on-line ones, in particular
regarding to aperiodic tasks which could occur
during the life of the process, but as the schedule
is known in advance, idle slots can be accurately
handled by an on-line scheduler, particularly if
those slots are thoroughly distributed upon the
pre-run-time schedule (Grolleau, 1999).

In the case of o�-line scheduling, the length of
a pre-run-time schedule to compute has to be
known. The o�-line approaches are mostly deal-
ing with non periodic task systems, but, using a
theorem of (Leung and Merrill, 1980), the authors
claim that their approaches can be applied to
periodic task systems where all the tasks are �rst
released simultaneously. These task systems are
called synchronous task systems. In fact, in this
case, at the date 0, each task is released, and one
hyperperiod later, at the date P = lcm(periods
of the tasks ) (where lcm is the least common
multiple) each task is released again, and if the
schedule is feasible, the task system is in the same
state than at the date 0. Therefore, in this case,
each periodic task �i with period Pi is decom-
posed into P

Pi
non periodic tasks. The problem

of determining the cyclicity of schedules for non
synchronous task systems has been investigated
in (Grolleau, 1999). This enables o�-line study of
non synchronous task systems.

The paper is organized as follows. In section 2,
the Petri net model used in order to enumerate
the entire set of feasible schedules is presented. In
section 3, the method used in order to get optimal
schedules is explained.

2. SCHEDULING WITH PETRI NETS

2.1 Task model

A real-time application is designed as a set of
mostly periodic interacting tasks, whose temporal
characteristics are �xed. Once the application is
designed, and the functional correctness proven,
the system must be temporally validated, i.e.
the temporal correctness must be proven, which
expresses that all the temporal constraints are
met, provided an appropriate scheduling policy is
used. The temporal model mostly used in real-
time scheduling theory is the model of (Liu and
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Fig. 1. Temporal parameters of a periodic real-
time task �ihri; Ci; Di; Pii

Layland, 1973) (see �g. 1) where each task �i is
characterized by four parameters:

� ri �rst release time of �i
� Ci run-time of �i
� Di deadline of �i
� Pi release period of �i

A task is then denoted �ihri; Ci; Di; Pii. Several
values are used to characterize the whole task sys-
tem, including the major cycle P = lcmi=1::n(Pi).
Once the latest release date r = maxi=1::n(ri)
is reached, the set of the local clocks of the
tasks behaves cyclically upon the major cycle. The
utilization factor U =

Pn

i=1
Ci

Pi

is a signi�cant

measure of the processor load : since Ci

Pi

is the
processor part required by �i, U is the processor
part required by the whole task system. If it is
greater than one, the task system is not feasi-
ble. If U is less than one, then the processor is
cyclically idle : idle slots occur periodically due
to the lack of processor request during the life of
the system. It can be shown that in a window of
size P , P (1 � U) idle slots occur. Therefore, the
periodic idle slots can be handled by an idle task
�0hr0; P (1�U); P; P i, which brings the processor
load U to one hundred percents. The release date
of the idle task is r0 = 0 when all the tasks are
synchronous, but will be determined in sec. 2.2.3
when some tasks are not synchronous.

Communications are introduced through asyn-
chronous message passing by means of mailboxes.
Those communications induce precedence con-
straints among the tasks. The usual way to deal
with precedence constrained tasks consists in slic-
ing them at the communication points, getting
canonical tasks, and to modify the temporal pa-
rameters of the new tasks in order to �t the
precedence constraints (Blazewicz, 1976). But the
inclusion of the precedence constraints within the
temporal parameters is achieved di�erently re-
garding the chosen policy. Therefore, in the case
of an o�-line approach, which is not based on a
speci�c priority driven scheduling policy, this way
to handle precedence constraints is not achievable.
Consequently, the whole precedence constraints of
the tasks have to be modeled in an o�-line ap-
proach. On one hand, this implies a more compli-



cated model than the usual on-line one but on the
other hand, the task systems which are handled
by our model is less restrictive than the usual one,
since when slicing tasks, communications cannot
occur within a critical section.

2.2 Modeling task systems with Petri nets

This section introduces the model used to schedule
real-time task systems. The model is a constrained
marking colored Petri net (R. Valk, 1981), under
the maximal �ring rule (Starke, 1990). This rule
inserts time in the behavior of the Petri net
since a transition is not �red alone, but a �re
involves a maximal set of enabled transitions
simultaneously. The expressiveness of Petri nets
under the maximal �ring rule is equivalent to the
expressiveness of T-timed Petri nets under the
earliest �ring rule.

2.2.1. The Petri net model Let S = f�0h0; 6; 20; 20i;
�1h0; 2; 4; 4i; �2h0; 1; 1; 5ig be a task system where
�1 and �2 share a resource R during their execu-
tion. The Petri net modeling S is represented on
Fig. 2. The model is decomposed into two parts :

� The temporal component containing :
A global clock RTC (Real Time clock),

which �res whatever the set of �red transi-
tions is, since this transition is always en-
abled. RTC acts as a timer of the Petri
net under the maximal �ring rule, since it
produces a token in each local clock of the
tasks at each time a set of transitions is
�red. Therefore in the sequel, the term "time
unit" is interchangeable with "a �re under
the maximal �ring rule"
The local clocks of the tasks enable to

periodically release the tasks. The local clock
of a task �i is compounded with a place
T imei accumulating the elapsed time since
the last release of �i (T imei collects a token
produced by RTC each time unit) ; and the
transition Clocki, which is enabled when this
place holds Pi tokens, �res at the following
time unit, producing a token of color a (for
activation) in place Activi

� The tasks body where each task competes
for the processor : each transition of the task
system is in mutual exclusion with all other
transitions of the tasks body thanks to a
place Processor which is not represented in
order to compress the graphical representa-
tion of the model. A task is represented clas-
sically with one serialized transition per time
unit of processor load, but blocks of d > 3
time units are compressed into 3 transitions
(see task �0 on Fig. 2). Communications are
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Fig. 2. A Petri net modeling a system of three
tasks. Each transition of the temporal speci�-
cation of the Petri net is labeled by the empty
word, and each transition of the tasks body
is labeled by the name of the task it belongs
to

modeled by mailbox places, and mutual ex-
clusions are modeled by resource places. The
�rst place of each task �i, named Activi, is a
colored place which can hold a� tokens and
b � tokens. An a � token indicates that the
task is active (it has been released), and a
b� token means that the task has completed
its last execution. In order to �t the temporal
speci�cations of the tasks, once an a� token

is produced in Activi, indicating an activa-
tion of �i, the task should have completed its
last execution, this means that Activi should
contain a b�token. If the deadline of �i is less
than its period (Di < Pi), a b� token should
be held by Activi as soon as the local clock
T imei holds more than Di tokens. These
two constraints are expressed by two marking
constraints for each task

� Mark(T imei) > Di )Mark(Activi) = fbg
� Mark(T imei) = 1)Mark(Activi) = fa; bg

2.2.2. Initial state and language We complete
the de�nition of the model by the description of
its initial marking. When a task �i is released at
the beginning (ri = 0) the place Activi holds an



a�token because �i is active at the beginning plus
a b�token in order to �t the marking constraints.
The place T imei contains one token, therefore �i
is reactivated by the production of a a � token

in Activi at the date Pi. When a task �j is lately
released (rj > 0), the place Activj contains only a
b�token because the task is not released initially.
The marking of the local clock T imej is Pj�rj+1
in order to release �j at the date rj .

We focus on the language of the Petri net model
where all the reached markings meet the mark-
ing constraints, and where each word is in�nite.
This language is called the center of the terminal
language. Since a marking meeting the marking
constraints corresponds to a state of the task
system where no temporal constraint is violated,
the center of the terminal language of the Petri net
corresponds to feasible schedules of the modeled
task system. Recall that the �ring rule is the earli-
est �ring rule, therefore the language corresponds
only to the whole set of feasible work-conserving 3

sequences. But since an idle task involving the
idle slots is always added to the task system, the
language of the Petri net computes the whole set
of non work-conserving sequences too since the
idle slots can be placed when there are other tasks
to compute. It is important since when some tasks
share resources, the work-conserving sequences
are not optimal (Grolleau, 1999).

Therefore, the whole set of feasible schedules is
given by the center of the terminal language of
the Petri net model. This model can be viewed
as a very exible enumeration method of feasi-
ble schedules because we can easily model mail-
boxes, multi-instance resources, read/write re-
sources, preemptive and non-preemptive parts...

2.2.3. Depth of the state graph The feasible
schedules are obtained through the construction of
the state graph of the Petri net, where each word
is in�nite. As in practice, we cannot deal with
in�nite state graph, we focus now on the cyclicity
of the schedules in order to bound the depth of
the state graph to compute. As an example, see
on Fig. 3 the set of feasible schedules (i.e. the
state graph) obtained from the simulation of the
Petri net given on Fig. 2. The depth of the state
graph is the length of the schedules of the modeled
task system. If all the tasks are synchronous,
then this depth is P = lcm(Pi) since the state
of the system (and equivalently the marking of
the Petri net) at the date 0 is the same than
at the date P . Therefore, in this case, the initial
marking is an home marking. If some tasks are
non synchronous, (Grolleau, 1999) has shown that
all feasible schedules behave cyclically after the

3 A work-conserving sequence is a sequence where the

processor cannot be idle if there is some work to process

τ
�τ

�

τ
�

Fig. 3. The state graph of the Petri net given on
Fig. 2 and equivalently the set of all feasible
schedules for the modeled task system.
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Fig. 4. The schedule of S2 given by an earliest
deadline priority assignment

last acyclic idle slot, with a period P , and that
the last acyclic idle slot occurs before the date
r + P . Therefore, the depth of the state graph to
construct is at most r+2P . The concept of acyclic
idle slot is the main point of the cyclicity of the
schedules. In order to focus on this concept, let's
study a task system with a processor utilization
U = 1. Let S2 = f�1h0; 1; 4; 4i; �2h1; 3; 6; 6i;
�3h3; 1; 4; 4ig with US2 = 1. The Fig. 4 shows
that the schedule produced by an earliest deadline
priority assignment produces an idle slot at the
date 6. This idle slot is an acyclic idle slot since it
occurs one time in the in�nite schedule (the cyclic
ones occur periodically, because there are exactly
P (1� US) cyclic idle slots each P units of time).
After this acyclic idle slot, the schedule behaves
cyclically upon P = 12 units of time. The acyclic
idle slot is due to the initial processor load, and it
does not depend on the scheduling policy: the idle
slots occur at the same date whatever the work-
conserving scheduling policy is (see Fig. 5). Here
is an idea of the proof of cyclicity for independent
task systems with a processor utilization U = 1.
Let tc be the date of the last acyclic idle slot.
Since U = 1, the sum of processor requests in the
interval [tc::tc + P [ is P . Since there is exactly
on idle slot in the interval [tc::tc + P [, it remains
exactly one unit of time to treat at the date tc+P .
Therefore, the processor processes this time unit,
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Fig. 5. Processor request diagram for S2 when a
work-conserving scheduling policy is used

and the processor requests at the date tc + P + 1
are given by the releases of the tasks at the date
tc+P +1, which are exactly the same than at the
date tc+1 because P = lcmi=1::n(Pi). So the state
of the task system is the same at the date tc+P+1
than at the date tc+1. Moreover, we have shown
in (Grolleau, 1999) that tc < r + P . This implies
that the date of the last acyclic idle slot can be
obtained through the construction of a processor
request diagram on the interval [0::r + P [. The
main diÆculty when the processor utilization is
less than one is that the acyclic idle slots have to
be distinguished from the cyclic idle slots which
can be handled by an idle task. Since in order to
obtain a minimal schedule length, the date tc has
to be as soon as possible, the release date of the
idle task is chosen to be r0 = tc + 1.

As a consequence, the state graph of the Petri net
model in the case of non synchronous task system
is compounded with a non cyclic part of depth
tc+1 (with tc < r+P ), which corresponds to the
initial load of the system, and with a steady part
between the depth (equivalently the date) tc + 1
and tc + P + 1. There is only one marking at the
depth tc+1, and this marking is an home marking.

3. EXTRACTION OF OPTIMAL SEQUENCES

The state graph obtained by means of simulation
of the Petri net model is a diamond 4 graph
because each path is a permutation of another
path, and the marking following the last acyclic
idle slot (or the initial marking in the case of
synchronous system) is an home marking.

Therefore, optimal schedules are easy to extract
from the state graph: each path (equivalently each
schedule) is labeled by the same set of names of
tasks, but possibly at di�erent depth (equivalently
di�erent dates). Example given, let �nd in a

4 A diamond graph is a graph with one source node and

one ending node, and each path goes from the source node

to the ending node. Moreover, each path is a permutation

of another path.
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Fig. 6. A weighted state graph for the minimiza-
tion of the average response times of �1. The
non-weighted edges are weighted by 0

state graph the optimal schedules for the criteria
"minimizing the maximal response time of a task
�i". A weight is associated to each edge of the
graph: each edge corresponding to the completion
of �i is weighted by the corresponding response
time of �i, and the other edges are weighted by
0. Since each path has the same number of edges
corresponding to the completion of �i, the paths
minimizing the weights are the paths where the
response times of �i is minimal.

Let illustrate this technique on the task system
S = f�0h0; 6; 20; 20i; �1h0; 2; 4; 4i; �2h0; 1; 1; 5ig
whose state graph is given on Fig. 3. The chosen
criteria is "minimizing the average response time
of �1". The Fig. 6 represents the weights associ-
ated to the edges. The weight of the nodes is then
obtained through a reverse topological algorithm:

� the last node is weighted by 0.
� a nodeN is weighted by w(N) = minN 02succ(N)

fweight(edge(N;N 0)+w(N 0))g, so its weight
corresponds to the minimal cost of a path
from N to the ending node.

This algorithm extracts the set of optimal sched-
ules for the given criteria. It is generalized to the
search for optimal schedules of criteria based on
the response time of a chosen set of tasks (e.g.
response time, reaction rate 5 , lateness 6 ,...).

4. CASE STUDY

Consider a task system dedicated to the control
of a mine pump : a mine has to be irrigated,
the level of water must lay between a low and
a high level, in�ltration irrigates it in a natural
way, and the task system has to ensure that the

5 The reaction rate is
response time

Di
6 The lateness is Di�response time



high level is never exceeded (see (J. Mathai, 1996)
for more details). When the water level becomes
too high, a pump is triggered until a lower level
is reached. Simultaneously, the methane level has
to be controlled in order to trigger an alarm
when a high level of methane is reached, and to
disable the pump if a dangerous level of methane
is reached. The entire process is displayed on a
control terminal. The task system is implemented
with 6 interacting tasks and two highly used
shared resources (the control terminal and a bu�er
shared by acquiring tasks and displaying tasks)
which exclude the use of an on-line scheduling
approach due to the enlargement of the duration
of the tasks using the shared resources in order
to avoid the priority inversion problems. Studying
the tasks, we get the following task system, where
durations are given in milliseconds. CT stands for
" uses the resource control terminal " and SB
stands for " uses the shared bu�er " :

Task ri Ci Di Ti CT SB Precedes

WaterLevel 0 10 100 100 no yes Control

MethanLevel 0 10 100 100 no yes Control

Control 20 15 100 100 no no Pump

Alarm

Display 10 70 500 500 yes yes

Alarm 0 20 100 100 yes no

Pump 40 12 100 100 no no

Using our tool PeNSMARTS (for Petri Net
Scheduling, Modeling and Analysis of Real-Time
Systems) on this system, we get a graph of all
feasible schedules containing 28649 nodes in less
than twenty seconds on a PENTIUM. Using the
method described in section 3, we obtain 512
sequences optimizing the average response time
of the tasks.

5. CONCLUSION

We propose a method of exhaustive computation
of real-time task schedules based on a Petri net
model. Given a task system, the language of its
associated Petri net is exactly its whole set of fea-
sible schedules. Once the language of the Petri net
is stored in the reachability graph, a shortest-path
based algorithm allows the extraction of optimal
schedules. This algorithm uses the home marking
property of the graph. This method was initially
achieved on synchronous task systems, and we
have shown that it is extendible without modi�ca-
tion to asynchronous task systems. This method
is the only o�-line method, in our knowledge, able
to schedule asynchronous task systems, and to
extract optimal schedules for several criteria.
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