
E. Grolleau and A. Choquet-Geniet, Off-line computation of real-time schedules by
means of Petri nets, Workshop On Discrete Event Systems, WODES2000, Kluwer
Academic Publishers, Ghent, Belgium, pp. 309-316, 2000

Off-Line Computation of Real-Time Schedules by
Means of Petri nets

Emmanuel Grolleau and Annie Choquet-Geniet
LISI-ENSMA, Téléport 2 - 1, rue Clément Ader, BP 40109, 86961 Futuroscope-Chasseneuil
Cedex, France, grolleau@ensma.fr, ageniet@ensma.fr

Keywords: Petri nets, earliest firing rule, real-time systems, off-line scheduling.

Abstract: We present an off-line methodology of analysis of real-time systems,
composed of periodic, precedence and resource constrained real-time tasks. As
there is no polynomial optimal scheduling technique for such tasks sets, we
present an enumerative method based on the construction of the state graph of
a Petri net. The time is modeled by the Petri net through the earliest firing rule.

1. INTRODUCTION

Real-time systems, most of the time dedicated to process control, are
characterized by temporal parameters, induced by the dynamic of the
controlled process. We assume that these parameters are a priori known, i.e.
we are only interested in deterministic real-time systems, since they are the
only systems for which the respect of the temporal constraints can be
guaranteed.

A real-time application is designed as a set of mostly periodic interacting
tasks, with fixed temporal characteristics. Once the application is designed,
and the functional correctness proven, the system must be temporally
validated, i.e. the temporal correctness must be proven, which expresses that
all the temporal constraints are met, provided an appropriate scheduling
policy is used. Two approaches are usually considered in order to solve the
scheduling problem. The on-line approach : a scheduling policy is
implemented within the scheduler ; and the off-line approach : a schedule is
stored in a table used by a dispatcher.

The scheduling algorithms used on-line are based on priorities, mostly
derived from the temporal parameters (e.g. Rate Monotonic, Earliest
Deadline, Least Laxity), and they are polynomial in time [5, 6](see [8] for a
survey). Under some specific assumptions (e.g. for Earliest Deadline,

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

independent tasks or precedence constrained tasks), some of them are
optimal in the following sense : a scheduling policy is said to be optimal if,
for a given task system, either the policy computes a feasible1 schedule, or
there is no feasible schedule of the task system. The scheduling problem
becomes NP-hard [7] when shared resources are involved (e.g. shared
memory or control terminal). The main difficulty comes from the duration of
the blockage of a task requesting a resource. In order to analyze the
schedulability of such a task system, the duration of each task is increased by
the duration of the longest blockage it could suffer. In this case, we then only
dispose of sufficient conditions of feasibility. Furthermore, the temporal
parameters of the tasks may then become unrealistic, this implies that the
more the number of task interactions by means of shared resources increases,
the more the efficiency of feasibility tests of on-line schedulability
decreases. A second difficulty comes from the lack of optimal on-line
algorithms for task systems where critical resources are involved.

Off-line scheduling methodologies have been studied in order to validate
highly constrained task systems. The methodologies are usually exponential
in time, but can lead to a feasible schedule, provided such one exists. Those
approaches are either exhaustive (enumeration techniques based on Petri net
modeling [3, 4] or branch and bound techniques [10, 1, 2]), or stochastic
(genetic algorithms, simulated annealing).

We present a methodology based on a fine modeling of a task system,
and on the modeling of time by means of the earliest firing rule [9]. We then
present some properties of the obtained Petri net and of its state graph.
Finally, we show how specific feasible schedules can be computed.

2. THE TASK MODEL

We deal only with periodic tasks. We suppose that sporadic tasks with
hard deadlines are modeled by periodic servers, and that background
scheduling is used on-line for non-periodic tasks with soft deadlines. Each
periodic task τi is characterized by four temporal parameters [6]:
– ri, its first release date
– Ci, its processor load, or its worst-case computation time on each release
– Di, its relative deadline, the time by which τi has to be computed relative

to its last release
– Pi, its release period: τi is released at the dates ri+kPi, k∈ NI .

1 A schedule where all tasks meet their deadlines.

Off line computation of real-time schedules by means of Petri nets

For short, we note τi<ri,Ci,Di,Pi>, and S={τi<ri,Ci,Di,Pi>}i=1..n denotes a
task system. We suppose that mini=1..n{ri}=0. We denote r=maxi=1..n{ri}. The
tasks are said synchronous if r=0, and asynchronous if r>0.

Our aim is to compute an infinite schedule meeting all the deadlines of
the tasks. Moreover, when interactions of tasks are involved (message
passing and use of critical resources), the implied structural constraints
(precedence constraints and mutual exclusion) must be respected.

Communications are modeled by one to one mailboxes, and by
assumption, the emission rate to a mailbox is equal to the reception rate. The
resources can be accessed either in write mode, or in read-only mode (i.e.
several read-only accessed can occur simultaneously). Moreover, some parts
of the tasks can be non-preemptible.

3. THE MODELING STEP

As the interactions of the tasks are complex, the expressiveness of a Petri
net (PN) model is appropriate. Furthermore, operational semantic involving
the time must be associated to the PN modeling the tasks system. We assume
that a quantum of preemption is defined: a running task can be preempted by
any pending task at each preemption point. Therefore, the scale used to
express the time is given in terms of preemption points, and a preemptible
task can be preempted each time unit.

3.1 The modeling of time

3.1.1 The earliest firing rule (EFR)

A PN obeys the EFR if each time a firing of transitions occurs, a
maximal set of transitions simultaneously enabled fires: let I be the set of
enabled transitions for a marking M (note that I is not a multiset, since a
transition t cannot fire more than once in the same firing step). A maximal
set of transitions simultaneously enabled I’⊆ I is defined by: ∀ t∈ I \I’, t is in
conflict with some transitions of I’ (i.e. the transitions of I are not in conflict,
and any other enabled transition is in conflict with some transition of I’).

A PN with the EFR has been shown to be equivalent to a timed PN at
maximal speed [9]. It behaves exactly like a timed PN at maximal speed
where all the durations of the transitions are one, nevertheless, their
implementation is easier. Furthermore, the expressiveness of PN with the
EFR is equivalent to the expressiveness of a Turing machine, therefore it can
model the whole set of interactions between tasks.

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

3.1.2 The modeling of periodic actions

The Figure 1.a presents the basic PN component which models the
periodicity of an elementary action e, occurring with period Pe (with Pe>1).

Clock

Pe-re+1

Time Release Active

Pe

e

(b)

WaitDelay

Clock

Time Release Active

Pe

e

re-Pe-1 (c)

Clock

Time Release Active

Pe

e

(a)

Figure 1.(a) Petri net model for a periodic action e (b) e is differed by re≤Pe+1 (c) e is
differed by re>Pe+1.

The transition Clock is a source transition which is always enabled
without any conflict. It follows that each time a maximal set of transitions is
fired, the transition Clock is fired, producing a token in the place Time which
acts like a local time marker. Thus, we then assimilate the firing of Clock to
a time unit in our scale of time. As soon as Time holds Pe tokens, the
transition Release is fired (simultaneously with Clock which is always fired),
so a token is produced in the place Active each Pe units of time at the dates
(k-1)Pe for k∈ NI . Finally, as each time Active contains a token, the
transition e is fired, the action e occurs at the dates kPe.

The same principle is used to model differed periodic action (first release
date greater than 0). If the first release date of the action e is re≤Pe+1, the
model differs from the previous model only by the initial marking (see
Figure 1.b), and if re>Pe+1, a place and a transition are added to the model
(see Figure 1.c).

On Figure 1.c, the transition Wait is fired during the re−Pe−1 first units of
time. Then the place Time needs Pe units of time to enable Release, which is
fired at the date re−1, so e is fired for the first time at the date re.

3.2 The complete model

The Figure 2. represents a Petri net modeling the task system
S={τ1<r1=1,C1=2,D1=3,P1=4>, τ2<r2=0,C2=1,D2=2,P2=2>}. Two main parts
compound the model : the clock system, and the task system.

3.2.1 The clock system

The clock system models the behavior of the time in paralleling the clock
systems of section 3.1.2. The body of the tasks can be complex and is
described in the next section, but remark that the Releasei transition produces
a token of color a (for activation) in Activei, and that when the task

Off line computation of real-time schedules by means of Petri nets

completes its execution, a b-token is produced in Activei. This token means
that the task has completed its last execution before another one. This token
allows the PN to forbid task reentrance. In addition, some constraints are
used on the allowed markings in order to model the deadlines of the tasks.

Clock

Time1 Time2

Release1 Release2

4 2

b a,b

a a

a,b a,b

Processor
b

bτ2τ1

τ1

Clock system

Task system

Active1
Active2

Figure 2. Petri net model for the task system S={τ1<r1=1,C1=2,D1=3,P1=4>,

τ2<r2=0,C2=1,D2=2,P2=2>}

When Time1 contains 4 tokens, the task τ1 has been released for 3 time
units, thus, it must have completed its execution (i.e. M(Active1)={b}). It
follows that the deadline of τ1 is met if and only if
M(Time1)=4⇒ M(Active1)={b} (i).

For the particular case of τ2 whose deadline D2=P2, Time2 cannot contain
more than D2 tokens. But as soon as M(Time2)=1, τ2 is released, so it must
have completed its last execution. It follows that τ2 meets its deadline if and
only if M(Time2)=1⇒ M(Active2)={a,b} (ii). The constraints (i) and (ii) are
called terminal constraints and a marking meeting these constraints
corresponds to a state of the system where all deadlines are met. Thus, an
infinite behavior of the Petri net where all the reached markings meet the
terminal constraints corresponds to a behavior of the modeled system where
all the deadlines are met. For a task τi, the terminal constraints are given by:
if Di<Pi, M(Timei)=Di+1⇒ M(Activei)={b}, and if Di=Pi,

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

M(Timei)=1⇒ (M(Activei)={a,b} or M(Activei)={b}) (the last case covers the
case where ri≥Pi).

3.2.2 The task system

Each task body of duration Ci of the tasks system is modeled by a series
of Ci transitions (note that a series of n≥3 transitions can be compressed into
a series of 3 transitions), each of them using a common resource: the
processor. It follows that one transition of the tasks can be fired at a time.
Interactions between the tasks can be modeled in an usual way by mailbox
places, and resource places (in exclusion mode or in read/write mode). The
beginning of a non-preemptible part is modeled by the fact that the first
transition of the part uses the processor but does not restitute it: the processor
is liberated by the last transition of the non-preemptible component.

Since we focus on the sequence of actions, each component transition of
τi is labeled with τi, and the other transitions are labeled with the empty
word. It follows that the language of the PN where all the reached markings
meet the terminal constraints (the center of the terminal language) is exactly
the set of feasible conservative2 schedules for the modeled system. It must be
noted that it exists some tasks system for which no feasible conservative
schedule exist but some feasible non-conservative schedules exists. In order
to obtain non-conservative schedules, a idle task is added to the PN model.
This task handles the idle slots and extends the language to the non-
conservative schedules. Thus the center of the terminal language is the
whole set of feasible schedules for the modeled system: each word of this
language (i.e. each path in the state graph) is a feasible schedule.

4. ANALYSIS OF THE SYSTEM

Since the length of each word is infinite, we have to show that each word
w of the PN language can be written wawc* (where * is the Kleene star). In
the case of synchronous task systems, at the date 0, all the tasks are
simultaneously released. One major period later P=lcmi=1..n{Pi}, all the tasks
are in the same state as at the date 0. It follows that in this case, the marking
of the PN at the date P is the same as M0. Thus, in the state graph of the PN,
M0 is an home marking, and each word can be written wc* where |wc |=P (|w|
denotes the length of w).

2 A conservative schedule does not let the processor idle while some pending tasks are to

process.

Off line computation of real-time schedules by means of Petri nets

In the case of asynchronous task systems, we have shown in [4] that for
all feasible schedule, a date tc can be computed, with tc≤r+P. This date is
unique for a task system, and the state of a system at the date tc is the same
as at the date tc+P. It follows that each word can be written wawc* where |wa

|=tc≤r+P and |wc|=P. Thus the state graph contains a marking at the depth tc

which is an home marking.
In both cases, the depth of the state graph is bounded, and contains an

home marking.
The state graph contains the entire set of feasible schedules, and it is

possible to extract the optimal schedules for several criteria (based on the
response time, the lateness or the reaction rate) on a selected set of tasks.
This particular pattern allows us to extract, in a complexity linear in the size
of the graph, a sub-graph containing the whole set of optimal schedules for a
given criteria. As an example, in order to extract the schedules minimizing
the average response time of τi and τj, each edge of the state graph
corresponding to a termination of τi or τj is weighted by its corresponding
response time (which is computed from the depth of the edge). The other
edges are weighted by 0. The optimal schedules for the given criterion are
the paths whose cost is minimal. Since each word is a permutation of
another, the graph is a diamond, therefore the computational complexity of
the shortest path search algorithm is linear in the size of the state graph.

The optimal schedules for the applied criterion are a sub-graph of the
state graph, and the technique can be applied recursively on this sub-graph in
order to obtain the optimal schedules for several criteria (e.g. best worst
reaction rate for τk,…).

Note finally that the fact that a finite word w reaches only valid markings
does not imply that it exists an infinite word in the center of the terminal
language whose prefix is w. Thus, the construction of the state graph of the
center of the terminal language implies backtracking (i.e. some nodes have
to be given up). This phenomenon can be reduced thanks to optimization: a
necessary condition for schedulability can be tested for each reached
marking.

Several heuristics are used in order to reduce the (non polynomial) size of
the state graph. One of them significantly reduces the graph in forbidding
non necessary preemptions: two concurring parts of tasks, independent from
each others cannot interleave. The main advantage of this heuristic is that it
does not reduce the scheduling power of the model (i.e. if there exists a
feasible schedule, then this heuristic let at least one schedule).

DISCRETE EVENT SYSTEMS: ANALYSIS AND CONTROL

5. CONCLUSION

We present a Petri net with the earliest firing rule which models periodic
real-time task systems. The center of its terminal language is exactly the set
of all feasible schedules for the modeled system. Since the state graph is
bounded, it can be constructed. We use several heuristics in order to reduce
it without reducing the scheduling power of the model: in fact it is an
optimal scheduler. In our knowledge, our method is the only off-line method
dealing with asynchronous periodic tasks, complex communications through
mailboxes, resources accessed in read-only or read/write mode, non-
preemptible parts. A tool based on this method, called PeNSMARTS for Petri
Net Scheduling, Modeling & Analysis of Real-Time Systems, has been
developed.

References

[1] K. R. Baker and Z. S. Su, Sequencing with due-dates and early start times to minimize
maximum tardiness, Naval Research Logistic Quarterly, 21 (1974), pp. 171-176.

[2] P. Bratley, M. Florian and P. Robillard, Scheduling with earliest start and due date
constraints on multiple machines, Naval Research Logistic Quarterly, 22 (1975), pp. 165-
173.

[3] A. Choquet-Geniet, F. Cottet and D. Geniet, Exhaustive computation of the scheduled task
execution sequences of a real-time application, FTRTFP, Lecture Notes in Computer
Science, 1135 (1996).

[4] E. Grolleau, Ordonnancement temps réel hors-ligne optimal à l’aide de réseaux de Petri en
environnement monoprocesseur et multiprocesseur, Université de Poitiers-ENSMA, 1999,
pp. 235.

[5] J. Leung and M. Merrill, A note on preemptive scheduling of periodic real-time tasks,
Information Processing Letters, 11 (1980), pp. 115-118.

[6] C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogramming in real-time
environment, Journal of the ACM, 20 (1973), pp. 46-61.

[7] A. K. Mok, Fundamental design problems of distributed systems for the hard real-time
environment, Department of Electrical Engineering and Computer Science, Massachussets
Institute of Technologie, Cambridge, 1983.

[8] J. A. Stankovic, M. Spuri, M. D. Natale and G. Buttazzo, Implications of classical
scheduling results fo real-time systems, IEEE Computer, 28 (1995), pp. 1-24.

[9] P. H. Starke, Some properties of timed nets under the earliest firing rule, Advances in Petri
nets 1989, Venice in Lecture Notes in Computer Science, 424 (1990), pp. 418-432.

[10] J. Xu and D. Parnas, Scheduling processes with release times, deadlines,
precedence, and exclusion relations, IEEE Transactions on Software Engineering, 16
(1990), pp. 360-369.

