
RDF Query Relaxation Strategies Based on
Failure Causes

Géraud Fokou, Stéphane Jean, Allel Hadjali, Mickaël Baron

LIAS/ISAE-ENSMA - University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France

{fokou, jean, hadjali, baron}@ensma.fr

Abstract. Recent advances in Web-information extraction have led to
the creation of several large Knowledge Bases (KBs). Querying these
KBs often results in empty answers that do not serve the users’ needs.
Relaxation of the failing queries is one of the cooperative techniques
used to retrieve alternative results. Most of the previous work on RDF
query relaxation compute a set of relaxed queries and execute them in
a similarity-based ranking order. Thus, these approaches relax an RDF
query without knowing its failure causes (FCs). In this paper, we study
the idea of identifying these FCs to speed up the query relaxation process.
We propose three relaxation strategies based on various information lev-
els about the FCs of the user query and of its relaxed queries as well. A
set of experiments conducted on the LUBM benchmark show the impact
of our proposal in comparison with a state-of-the-art algorithm.

1 Introduction

Recent projects like DBpedia [1] or Knowledge Vault [2] have created Knowledge
Bases (KBs) with millions of facts represented in the RDF format. Despite their
large size, KBs face a significant amount of incomplete factual knowledge, which
makes query answering over them often unsuccessful. For instance, a recent
study on SPARQL endpoints [3] shows that ten percent of the submitted queries
between May and July 2010 over DBpedia returned empty answers.

Relaxation of the failing queries is one of the cooperative techniques used to
retrieve alternative results in order to serve the users’ needs. In the context of
RDF, current approaches generate multiple relaxed queries using different tech-
niques such as logical relaxation based on RDFS entailment and RDFS ontolo-
gies [4–7], query rewriting rules [8], statistical language models [9] or matching
functions [10]. Most of these approaches compute the similarities between the
obtained relaxed queries and the user failing query and then proceed to the
execution of the relaxed queries in a similarity-based ranking order. A major
drawback of the above approaches is the fact they relax the user query without
knowing its Failure Causes (FCs).

In our previous work [11], we have addressed the issue of finding the FCs of
an RDF query by computing a set of Minimal Failing Subqueries (MFSs) and
argued that they provide the user with a clear explanation about the reasons of

The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-34129-3_27

the empty answer retrieved. In this paper, we investigate the idea of using MFSs
to perform the query relaxation process. The main idea is that MFSs can speed
up this relaxation process by avoiding executing relaxed queries that still contain
one or several FCs. This approach applies both for the user query, as well as
for the failing relaxed queries. However, as enumerating the MFSs of a query is
an NP-hard problem [12], identifying them could be sometimes disadvantageous
since the MFSs computation time may be greater than the execution time of the
relaxed queries avoided thanks to them. Thus, we show that there is a tradeoff
between not knowing any MFSs and identifying the MFSs of each relaxed query.
To do so, we propose three strategies that leverage different levels of information
about the MFSs of the user query and of its relaxed queries as well. The main
contributions made in this paper are the following.

1. Based on previous work [4, 5], we define the necessary data structures for
relaxing the triple patterns of an RDF query and the query itself.

2. We review the state-of-the-art relaxation strategy and propose three new
approaches. By doing so, we cover the full spectrum of information about
the MFSs as they are respectively not, partially and fully taken into account
in these strategies.

3. We provide a set of experiments on several datasets of the LUBM benchmark
that were run on top of Jena TDB and Virtuoso. The analysis of the results
shows that to guarantee a relaxation process with an acceptable computation
time, a balancing between the information pertaining to the MFSs and the
relaxed queries is needed.

This paper is organized as follows. In Section 2, we introduce the basic
notions used in this paper. The data structures needed for our query relaxation
strategies are then defined in Section 3. We detail these strategies in Section 4
and present our experiments to evaluate them in Section 5. Finally, we discuss
related work in Section 6 and conclude in Section 7.

2 Preliminaries and Problem Statement

This section formally describes the parts of RDF and SPARQL that are necessary
to our proposal using the definitions given in [13]. We also recall an RDF query
relaxation model borrowed from [5].

2.1 Notion of Minimal Failing Subquery (MFS)

An RDF triple is a triple (subject, predicate, object) ∈ (U ∪B)×U×(U ∪B∪L)
where U is a set of URIs, B is a set of blank nodes and L is a set of literals. We
denote by T the union U ∪B ∪L. An RDF database (or triplestore) stores a set
of RDF triples in a triples table or one of its variants.

An RDF triple pattern t is a triple (subject, predicate, object) ∈ (U ∪ V)×
(U ∪ V)× (U ∪ V ∪L), where V is a set of variables disjoint from the sets U , B
and L. We denote by var(t) the set of variables occurring in t. We consider RDF

queries defined as a conjunction of triple patterns: Q = t1∧· · ·∧tn. Let D be an
RDF database, t a triple pattern and Q an RDF query, the evaluation of t and
Q over D are respectively denoted by [[t]]D and [[Q]]D. This evaluation can be
done under different entailment regimes as defined in the SPARQL specification.
In this paper, the examples as well as our experiments are based on the RDFS
entailment regime.

Given a query Q = t1 ∧ · · · ∧ tn, a query Q′ = ti ∧ · · · ∧ tj is a subquery of Q,
Q′ ⊆ Q, iff {ti, · · · , tj} ⊆ {t1, · · · , tn}. If {ti, · · · , tj} ⊂ {t1, · · · , tn}, we say that
Q′ is a proper subquery of Q (Q′ ⊂ Q). A Minimal Failing Subquery MFS of a
query Q is defined as follows: [[MFS]]D = ∅ ∧@ Q′ ⊂MFS such that [[Q′]]D =
∅. The set of all MFSs of a query Q is denoted by mfs(Q). Examples of MFSs
are given in the next section.

2.2 Query relaxation model

Given a triple pattern t, t′ is a relaxed triple pattern obtained from t, denoted
by t ≺ t′, if t′ 6= t and over every RDF databases D for the given schema,
[[t]]D ⊆ [[t′]]D. A relaxation rule is a rewrite rule such that its application to
a triple pattern results in a relaxed triple pattern. In this paper, we consider
the following relaxation rules (sc and sp are respectively the shorter names for
subClassOf and subPropertyOf):

– Class relaxation (R1). (s, type, c1)⇒ (s, type, c2) if (c1, sc, c2).
– Property relaxation (R2). (s, p1, o)⇒ (s, p2, o) if (p1, sp, p2).
– Constant to variable relaxation (R3). If c is a constant occurring in t, then
t⇒ t′ where t′ is the triple obtained by replacing c by a variable v /∈ var(t).

Given a triple pattern t = (s, p, o) and its relaxed triple pattern t′ =
(s′, p′, o′), the similarity between t and t′ can be defined as follows [5]:

Sim(t, t′) =
1

3
∗ Sim(s, s′) +

1

3
∗ Sim(p, p′) +

1

3
∗ Sim(o, o′)

We use the following similarity measures for the considered relaxation rules:

– If c is a subclass of c′, Sim(c, c′) = IC(c′)
IC(c) where IC(c) = −logPr(c) and

Pr(c) = |Instances(c)|
|Instances| (Instances(c) is the set of instances of c and Instances

the set of all instances of the RDF database).

– If p is a subproperty of p′, Sim(p, p′) = IC(p′)
IC(p) where IC(p) = −logPr(p)

and Pr(p) = |Triples(p)|
|Triples| (Triples(p) is the set of triples concerning p and

Triples the set of all triples of the RDF database).
– If c is a constant and v a variable, Sim(c, v) = 0.

Given a user query Q = t1 ∧ · · · ∧ tn and a query Q′ = t′1 ∧ · · · ∧ t′n, Q′ is a
relaxed query of Q, denoted by Q ≺ Q′, if (i) for each triple pattern ti, ti � t′i
(either ti = t′i or ti ≺ t′i) and (ii) for at least one triple pattern tj , tj ≺ t′j .

Triples

subject predicate object

s1 type Lecturer

s1 teacherOf SW

s1 age 45

s2 type Lecturer

s2 nationality US

s2 age 46

s3 type FullProfessor

s3 teacherOf DB

s3 age 46

SELECT ?p ?n WHERE {
?p type Lecturer (t1)
?p nationality ?n (t2)
?p teacherOf SW (t3)
?p age 46 } (t4)

mfs(Q) = {t2 ∧ t3, t3 ∧ t4}
mfs(Q’) = {t2 ∧ t

(1)
3 , t1 ∧ t

(1)
3 ∧ t4}

SELECT ?p ?n WHERE {
?p type Lecturer (t1)
?p nationality ?n (t2)

?p teacherOf ?c (t
(1)
3)

?p age 46 } (t4)

(a) RDF triples

(d) A relaxed query Q′

(c) The query Q

(b) The MFSs of Q and Q′

Fig. 1. Example of a relaxed query of Q

Figure 1 presents an example of a relaxed query Q′ of Q = t1 ∧ t2 ∧ t3 ∧ t4 with

their MFSs. In this example t
(1)
3 is a relaxed triple pattern of t3.

As for the similarity between a query Q and its relaxed query Q′, we use
Sim(Q,Q′) =

∏n
i=1 Sim(ti, t

′
i). Let D be an RDF database, if µ ∈ [[Q′]]D and

µ /∈ [[Q]]D, then µ is an approximate answer of Q. The approximate answers are
ranked thanks to a score defined by: Score(µ,Q) = { max(Sim(Q,Q′)) | Q ≺
Q′ ∧ µ ∈ [[Q′]]D }.

Problem Statement. Knowing the set of MFSs of a failing RDF query Q, we
are concerned with finding the top-k approximate answers of Q efficiently.

3 Query Relaxation Data Structures

We first define the data structures needed for the proposed relaxation strategies.

3.1 Triple Pattern Relaxation

Let t be a triple pattern. One or several relaxation rules may be applied to
t. The same relaxation rules may also be applied several times to the same
triple pattern. We denote by t(0) the original triple pattern, by t(i) the i-th best
relaxation of t in terms of similarity with t and by nbRel(t) the number of relaxed
triple patterns of t. By definition, if i < j, then Sim(t(i), t) ≥ Sim(t(j), t).
However, the following relationship does not necessarily hold t(i) � t(j).

Example. Let us assume that FullProfessor is a subclass of Professor. By
applying the previous relaxation rules to the triple pattern (?X, type, FullPro-
fessor), we find the following relaxed triple patterns of t: t(1) = (?X, type,

Professor) where Sim(t(1), t) = 0.9 and t(2) = (?X, ?Y, FullProfessor) where
Sim(t(2), t) = 2

3 . Yet, t(1) � t(2).
Let t be a triple pattern and ApplyRules(t) be a function that returns all

the relaxed triple patterns of t resulting from the application of the three con-
sidered relaxation rules. Algorithm 1 computes the relaxed triple patterns of t
ordered by similarity. An example of relaxation of the triple pattern (?X, type,
FullProfessor) using our three relaxation rules (R1, R2 and R3) is presented in
Figure 2.

Algorithm 1: Computation of the relaxation of t ordered by similarity

Relax(t)
input : A triple pattern t;
output: the list of relaxed triple patterns of t : t(0) · · · t(n);

1 T ← ∅; Res← ∅; // Res: resulting list of t(i) sorted by sim

2 T.enqueue(t); // T: priority queue of t(i) sorted by sim

3 while T 6= ∅ do
4 ti = T.dequeue();
5 Res.enqueue(ti);
6 foreach triple pattern tj ∈ ApplyRules(ti) do
7 if tj /∈ T then
8 T.enqueue(tj);

9 return Res;

t(0) : (?X, type, FullProfessor)

Sim(t(0), t) = 1

t(2) : (?X, type, ?Z)

Sim(t(2), t) = 0.67

t(1) : (?X, type, Professor)

Sim(t(1), t) = 0.9

t(3) : (?X, ?Y, FullProfessor)

Sim(t(3), t) = 0.67

t(4) : (?X, ?Y, Professor)

Sim(t(4), t) = 0.57

t(5) : (?X, ?Y, ?Z)

Sim(t(5), t) = 0.33

(R1) (R3) (R3)

(R3) (R3)

(R3)

(R1) (R3)

(R3)

Fig. 2. Relaxation of a Triple Pattern

3.2 Query Relaxation Graph

Let Q = t
(0)
1 ∧ · · · ∧ t

(0)
n be the original failing RDF query. The set of relaxed

queries of Q is { Q′ = t
(i1)
1 ∧ · · · ∧ t(in)n | ∃k ∈ [1, n] : ik > 0 }. Inspired by [5]1,

1 The proposed relaxation graph is not equivalent to the one proposed in [5]. Indeed,
an edge between two queries Q1 and Q2 does not necessarily mean Q1 � Q2. This
property simplifies the computation of the children of a node in the graph.

we organize this set of relaxed queries in a graph structure. The initial query
is at the top of this graph and each relaxed query is a node of this graph. An

edge from node Qi = t
(i1)
1 ∧ · · · ∧ t(in)n to Qj = t

(j1)
1 ∧ · · · ∧ t(jn)n exists if and

only if (i) for one triple pattern tl, il = jl − 1 and (ii) for each other triple
patterns tk, ik = jk. Thus, by construction, Sim(Q,Qi) ≥ Sim(Q,Qj). This
graph has different levels according to the lengths of the paths from the root

to relaxed queries. At level h we find all relaxed queries Q′ = t
(i1)
1 ∧ · · · ∧ t(in)n

such as
∑n

k=1 ik = h. The number of relaxed queries in this relaxation graph is∏n
i=1(nbRel(ti) + 1).

Figure 3 gives an example of a relaxation graph for our sample query Q =
t1∧ t2∧ t3∧ t4. For simplification, this example assumes that each triple pattern
can only be relaxed a single time. We do not give the algorithm to compute this
complete query relaxation graph as it is incrementally built in the relaxation
strategies proposed in the next section.

t
(0)
1 t

(0)
2 t

(0)
3 t

(0)
4

Q,Sim = 1

t
(1)
1 t

(0)
2 t

(0)
3 t

(0)
4

Q1, Sim = 0.9
t
(0)
1 t

(1)
2 t

(0)
3 t

(0)
4

Q2, Sim = 0.67
t
(0)
1 t

(0)
2 t

(1)
3 t

(0)
4

Q3, Sim = 0.8
t
(0)
1 t

(0)
2 t

(0)
3 t

(1)
4

Q4, Sim = 0.67

t
(1)
1 t

(1)
2 t

(0)
3 t

(0)
4

Q5, Sim = 0.6
t
(1)
1 t

(0)
2 t

(1)
3 t

(0)
4

Q6, Sim = 0.72
t
(1)
1 t

(0)
2 t

(0)
3 t

(1)
4

Q7, Sim = 0.6
t
(0)
1 t

(1)
2 t

(1)
3 t

(0)
4

Q8, Sim = 0.53
t
(0)
1 t

(1)
2 t

(0)
3 t

(1)
4

Q9, Sim = 0.44
t
(0)
1 t

(0)
2 t

(1)
3 t

(1)
4

Q10, Sim = 0.53

t
(1)
1 t

(1)
2 t

(1)
3 t

(0)
4

Q11, Sim = 0.48
t
(1)
1 t

(1)
2 t

(0)
3 t

(1)
4

Q12, Sim = 0.4
t
(1)
1 t

(0)
2 t

(1)
3 t

(1)
4

Q13, Sim = 0.48
t
(0)
1 t

(1)
2 t

(1)
3 t

(1)
4

Q14, Sim = 0.36

t
(1)
1 t

(1)
2 t

(1)
3 t

(1)
4

Q15, Sim = 0.32

Fig. 3. Query Relaxation Graph

4 Query Relaxation Strategies

In this section, we first review a state-of-the-art strategy for exploring the query
relaxation graph introduced in the previous section. Then we propose three
MFS-based strategies.

4.1 Best-First Search (BFS)

It can be easily shown that the h-th best relaxed query Q′ of Q is at level h or less
of the query relaxation graph. Thanks to this property, the top-k approximate
answers could be found with an algorithm that executes the relaxed queries of
the graph in the ranking order such as the one proposed in [5]. For example, this
algorithm explores the query relaxation graph depicted in Figure 3 in the fol-
lowing order : Q1, Q3, Q6, Q2, Q4, Q5, Q7, Q8, Q10, Q11, Q13, Q9, Q12, Q14, Q15.

In the best-case scenario, this algorithm will only execute one relaxed query to
find the top-k approximate answers. In the worst-case scenario, it has to execute
all the queries of the graph. As there is an exponential number of relaxed queries
(in terms of query size), this algorithm may require an exponential time.

As the causes of the query’s failure are unknown in this algorithm, it may
execute queries that cannot have any answers and/or relax triple patterns that
do not need to be modified. As it will be seen later, the MFSs provide important
clues to avoid these pitfalls.

4.2 MFS-Based Search (MBS)

As stated in the following propositon, the MFSs of the failing query identify
some relaxed queries that will necessarily fail.

Proposition 1. Let Q′ be a relaxed query of Q. If Q′ does not relax at least
one triple pattern of each MFS of Q, then Q′ is failing.

Proof. If there is one MFS of Q, denoted Q∗, such as none of its triple patterns
has been relaxed in Q′, then Q∗ ⊆ Q′. A query that contains a failing query,
also fails. By definition of an MFS, Q∗ is a failing query. Thus Q′ is also failing.

Based on Proposition 1, we have devised the Algorithm 2 named MFS-Based
Search (MBS). This algorithm uses a priority queue RQ of relaxed queries or-
dered by their similarities with Q. Initially the query Q is added to this queue.
It explores each query enqueued in RQ and stops when RQ is empty or when
the number of expected answers is obtained (line 3). Each query of RQ is ex-
plored as follows. If this query is not labelled as failing, it is executed and its
answers are added to the result Res (lines 5-6). Then, all the children of this
query that have not already been proceeded (labelled as marked) are added to
RQ (lines 7-10). If the added child contains an MFS of Q, this query is labelled
as failing (lines 12-13). This way, MBS prunes the search space of the query
relaxation graph with failing RDF queries identified with MFSs. In this process,
Algorithm 1 is used to find the relaxed triple patterns t(i) of each triple pattern
t as well as its number of relaxed triple patterns nbRel(t).

If the MFSs of our query Q = t1 ∧ t2 ∧ t3 ∧ t4 are t2 ∧ t3 and t3 ∧ t4, then
all the queries in red in Figure 3 (Q1, Q2, Q4, Q5, Q7) can be pruned from the
relaxation graph thanks to Proposition 1. Thus, MBS executes the queries in
the following order : Q3, Q6, Q8, Q10, Q11, Q13, Q9, Q12, Q14, Q15.

Algorithm 2: MFS-Based Query Relaxation

Relax(Q, mfs(Q), D, k)
inputs : A failing query Q ; the set of MFSs of Q : mfs(Q);

an RDF database D ; the number of expected answers k
output: a set of top-k approximate results of Q denoted by Res;

1 Res← ∅; RQ← ∅; // the relaxed queries ordered by similarities

2 RQ.enqueue(Q); label Q as failing;
3 while RQ 6= ∅ ∧ |Res| < k do
4 Q′ = RQ.dequeue();
5 if Q′ is not labelled as failing then
6 Res← Res ∪ [[Q′]]D;

7 foreach triple pattern t
(ik)
k ∈ Q′ such that ik < nbRel(tk) do

8 Qc ← t
(i1)
1 ∧ · · · ∧ t

(ik+1)

k ∧ · · · ∧ t
(in)
n ; // a child of Q′

9 if Qc is not labelled as marked then // not explored

10 RQ.enqueue(Qc);
11 label Qc as marked;
12 if ∃Q∗ ∈ mfs(Q) such that Q∗ ⊆ Qc then
13 label Qc as failing;

14 return Res;

4.3 Optimized MFS-Based Search (O-MBS)

In the previous approach, we only use the MFSs of the initial query to prune
the search space. The idea behind the Optimized MFS-Based Search (O-MBS)
is that the MFSs of the initial query Q give some clues on the MFSs of a relaxed
query Q′ of Q. Intuitively, a relaxed query Q′ of Q fails if and only if at least one
MFS of Q has not been repaired in Q′ or if there is a failing query in Q′ that was

not minimal in Q. More formally, let MQ be an MFS of Q, we denote by M↑Q
′

Q

the query that corresponds to MQ in Q′. By extension, we denote by mfs↑Q
′
(Q)

the queries corresponding to the MFSs of Q in Q′. For instance, in the example

given in Figure 1, mfs↑Q
′
(Q) = {t2 ∧ t(1)3 , t

(1)
3 ∧ t4}. This example also shows

that the following relationship does not necessarily hold: mfs(Q’) ⊆ mfs↑Q
′
(Q).

However, as we now prove, each MFS of Q′ includes a query of mfs↑Q
′
(Q).

Proposition 2. For any MFS MQ′ of Q′ there is an MFS MQ of Q such that

M↑Q
′

Q ⊆MQ′ .

Proof. Let MQ′ be an MFS of Q′. By definition MQ′ is failing. As [[M↑QQ′]] ⊆
[[MQ′]], M↑QQ′ is also failing. So, M↑QQ′ contains an MFS MQ of Q and thus

M↑Q
′

Q ⊆MQ′ .

Thus, if an MFS has been repaired, there can still be some queries that
include this MFS and fail. Identifying these new MFSs is not easy. Indeed, the

number of queries that include the repaired MFS is exponential in terms of the
number of query triple patterns. Thus, the O-MBS strategy is only based on
the MFSs that are not repaired. It extends the MBS algorithm (Algorithm 2)
as follows. For each relaxed query Q′ explored in the query relaxation graph,
each query MQ′ ∈ mfs↑Q

′
(Q) is executed. If the query MQ′ is failing, MQ′ is

an MFS of Q′ and thus, all queries that contains MQ′ can be pruned from the
query relaxation graph (thanks to Proposition 1). To optimize this process, the
discovered MFSs of each query Q′ explored are recorded. They are denoted
dmfs(Q’). When a query Q1 is explored, the O-MBS strategy only executes
the MFSs in dmfs(Q0), where Q0 is the last explored query such that Q0 ≺
Q1. Indeed, it is unnecessary to execute the MFSs that was already repaired
previously by Q0.

Coming back to our example depicted in Figure 3, let us assume that the

query Q3 does not repair the MFS t2 ∧ t3 (i.e, t2 ∧ t(1)3 is failing). Then, the
queries Q6, Q10 and Q13 are pruned from the relaxation graph. If none of the
MFSs of the following explored queries are discovered, then O-MBS executes the
queries in the following order : Q3, Q8, Q11, Q9, Q12, Q14, Q15.

4.4 Full MFS-Based Search (F-MBS)

In the previous strategy, all the MFSs of an explored relaxed query are not
necessarily discovered. In this section, we propose an approach to compute this
complete set of MFSs. By proposing this approach, we want to investigate if it is
worth computing the set of MFSs of each explored node of the query relaxation
graph, i.e., if this computation time is acceptable in comparison with the number
of relaxed queries that are pruned thanks to the discovered MFSs. This strategy
called Full MFS-Based Search (F-MBS) is based on the two following corollaries
that are directly derived from Proposition 2.

Corollary 1. If all the queries MQ ∈ mfs↑Q
′
(Q) are failing, then: mfs(Q′) =

mfs↑Q
′
(Q).

Corollary 2. Each MFS MQ′ of Q′ contains the triple patterns that are shared

by the queries of mfs↑Q
′
(Q)

Thanks to these corollaries, F-MBS extends the O-MBS strategy as follows.
For each relaxed query Q′, we execute all the MFSs of mfs↑Q

′
(Q0), where Q0

is the last explored query such that Q0 ≺ Q′. If all these queries are failing,
then mfs(Q′) =mfs↑Q

′
(Q0) (thanks to Corollary 1). Otherwise, we execute an

optimized version of the LBA algorithm [11] to find the MFSs of Q′. As in the
previous strategies, the queries that include at least one of the identified MFSs
of Q′ are pruned from the query relaxation graph.

Because of space limitation, we only describe the main principle of the opti-
mized version of LBA. Let us first describe the main steps of the original version
of this algorithm. The LBA algorithm explores the lattice of subqueries of a
query Q′ built by removing some triple patterns of Q′. It follows a three-steps

procedure: (1) find an MFS of Q′, (2) compute the maximal queries that do not
include the MFS previously found and (3) apply this process recursively on the
failing queries previously computed.

Thanks to the discovered MFSs of Q′, dmfs(Q’), this algorithm is optimized
as follows. Instead of executing the first two steps, it directly computes the
maximal queries that do not include the MFSs of dmfs(Q’). Moreover, using
Corollary 2, the search for the next MFS is simplified as we know that it contains
the triple patterns shared by the MFSs of mfs↑Q

′
(Q0). In the worst case scenario

when none of the MFSs were discovered and no triple pattern is shared by
the MFSs of mfs↑Q

′
(Q0), LBA is executed in its original version (it may cost

exponential time in the worst case). In the best case scenario where only one
MFS is missing and most of its triple patterns are included in the discovered
MFSs, LBA will only execute one query for each missing triple pattern in this
MFS.

Consider again the example depicted in Figure 3 and let us assume that

mfs(Q3) = {t2 ∧ t(1)3 , t1 ∧ t(1)3 ∧ t4}. Then, the queries Q6, Q10, Q13 and Q8 are
pruned from the query relaxation graph. If the MFSs of the following explored
queries do not help in pruning further the graph, then F-MBS executes the
queries in the following order : Q3, Q11, Q9, Q12, Q14, Q15.

5 Experimental Evaluation

Experimental setup. We have implemented the MBS, O-MBS and F-MBS al-
gorithms in JAVA 1.8 64 bits. These algorithms take as inputs a failing SPARQL
query and a number of expected answers k. They return a maximum of k ap-
proximate answers of this query. These algorithms are based on the MFSs of the
failing query, which are computed with the LBA algorithm [11]. This implemen-
tation can be run on top of any triplestore that supports the SPARQL language.
In our experiments, they were run on top of Jena TDB (version 3.0.0) and
Virtuoso (version 7.2.1). Our implementation is available at http://www.lias-
lab.fr/forge/projects/qars.

Our experiments were conducted on a Ubuntu Server 14.04.02 LTS system
with Intel XEON CPU E5-2630 v3 @2.4Ghz CPU and 32GB RAM. All times
presented are the average of five consecutive runs of the algorithms. Before the
actual measured run starts, we run the algorithm once.
Dataset and Queries. As in previous work on RDF query relaxation [5],
we used datasets generated with the LUBM benchmark. The used datasets
range from LUBM100 (17M triples) to LUBM1K (167M triples). These datasets
include both the initial triples generated with the LUBM benchmark and the
implicit triples entailed by the RDFS semantics. Statistics on these datasets
are precomputed and used later by our algorithms. They are composed of the
classes and properties hierarchies, the number of instances by class, the number
of triples by property and the total number of instances and triples.

As the workload used in [5] only involves queries with a maximum of 5 triple
patterns and 1 MFS, we have modified these 7 queries. The resulting queries

given in Table 12 cover the main query patterns (star, chain and composite),
range between 1 and 15 triple patterns and include 1 up to 4 MFSs.

Q1 SELECT * WHERE { ?X type FullProfessor .

(1 MFS) ?X title ’Dr’ }
Q2 SELECT * WHERE { UndergraduateStudent33 advisor ?Y1 . ?Y1

(3 MFSs) doctoralDegreeFrom ?Y2 . ?Y2 hasAlumnus ?Y3 . ?Y3 title ?Y4 }
Q3 SELECT * WHERE { ?X type FullProfessor . ?X publicationAuthor

(4 MFSs) ?Y1 . ?X worksFor ?Y2 . ?Y3 advisor ?X . ?X title ?Y4 }
Q4 SELECT * WHERE { ?X type UndergraduateStudent . ?X memberOf ?Y1

(3 MFSs) . ?X mastersDegreeFrom University822 . ?X emailAddress ?Y2 . ?X

advisor FullProfessor0 . ?X takesCourse ?Y3 . ?X name ?Y4 }
Q5 SELECT * WHERE { ?X type FullProfessor . ?X doctoralDegreeFrom

(3 MFSs) ?Y1 . ?X memberOf ?Y2 . ?X headOf ?Y1 . ?X title ?Y3 . ?X

officeNumber ?Y4 . ?X researchInterest ?Y5 . ?Y6 advisor ?X .

?Y6 name ?Y7 }
Q6 SELECT * WHERE { ?X type Faculty . ?X doctoralDegreeFrom ?Y1

(4 MFSs) . ?X memberOf ?Y2 . ?X headOf ?Y3 . ?X title ?Y4 . ?X

officeNumber ?Y5 . ?X researchInterest ?Y6 . ?X name

’FullProfessor3’ . ?X emailAddress ?Y7 . ?X age ?Y8 . ?X

mastersDegreeFrom Department2 . ?X undergraduateDegreeFrom ?Y9 }
Q7 SELECT * WHERE { ?X type Professor . ?X teacherOf Course2 .

(4 MFSs) ?X name ?Y1 . ?X age ?Y2 . ?X emailAddress ?Y3 . ?X

mastersDegreeFrom ?Y4 . ?X worksFor ?Y5 . ?Y5 subOrganizationOf

?Y6 . ?Y6 name ?Y7 . ?Y8 advisor ?X . ?Y8 mastersDegreeFrom ?Y4

. ?Y8 memberOf ?Y9 . ?Y8 emailAdress ?Y10 . ?Y8 takesCourse ?Y11

. ?Y8 name ?Y12 }
Table 1. Workload queries

Experiment 1. We have first evaluated the scalability properties of MBS,
O-MBS and F-MBS in comparison with our own implementation of the BFS
algorithm proposed in [5]. This experiment has been run on Jena TDB with
the LUBM100 dataset and k (the number of approximate answers) set to 50.
Figure 4 and 5 show respectively the execution time and the number of executed
queries for each workload query. For the MBS, O-MBS and F-MBS algorithms,
these measures include both the computation of the MFSs and the execution of
the relaxed queries.

In this experiment, BFS executes more queries than our algorithms. This
difference increases with the size of the query. In particular, for queries Q6 and
Q7 that have more than 10 triple patterns and 4 MFSs, this algorithm needs
to explore a large part of the query relaxation graph to repair the MFSs. This
result in more than 1000 executed queries. In the case of Q2, this difference in
the number of executed queries does not imply a larger execution time as the
relaxed queries have short execution times. But, for other queries, our fastest

2 For readability, we shorten URIs and omit namespaces

algorithm O-MBS outperforms BFS by more than a factor of 2 (average query
times go from around 18 seconds to around 7 seconds).

Q1 Q2 Q3 Q4 Q5 Q6 Q7
BFS 13,3 0,06 4,61 30,99 4,52 22,37 34,25
MBS 12,83 0,01 0,97 30,43 3,91 11,04 11,38
O‐MBS 0,05 0,01 0,97 16,85 1,95 10,93 11,72
F‐MBS 0,06 0,01 0,97 16,60 1,93 24,60 12,65

0

5

10

15

20

25

30

35

Ti
m
e
(s
ec
)

Fig. 4. Execution time (Jena)

Q1 Q2 Q3 Q4 Q5 Q6 Q7
BFS 18 26 41 160 761 13809 4520
MBS 15 10 14 118 42 63 73
O‐MBS 7 10 14 49 39 53 77
F‐MBS 7 10 14 57 43 68 81

1

10

100

1000

10000

N
um

be
r o

f e
xe
cu
te
d
qu

er
ie
s

N
um

be
r o

f e
xe
cu
te
d
qu

er
ie
s

Fig. 5. # Executed queries (log scale)

Considering our proposed algorithms, O-MBS is better than the other strate-
gies w.r.t minimizing the computation time as well as the number of executed
queries in the majority of cases. Only the MBS algorithm executes less query
than O-MBS for Q7 and it does not result in a larger execution time. For other
queries O-MBS has better performance than MBS and in particular for Q1, Q4
and Q5. Let us consider Q1 to illustrate how O-MBS reduces the number of
executed queries. Q1 has only 1 MFS: (?X, title,′Dr′) as there is not any title
in the RDF database. MBS and O-MBS start by relaxing this triple pattern, for
instance by (?X, title, ?Y). Then the two algorithms differ in their strategies. O-
MBS executes this triple pattern and find that it is still an MFS for the relaxed
query. As a consequence it will relax again this triple pattern and find approxi-
mate answers. Conversely, as MBS only uses the MFSs of the initial query, this
algorithm tries to relax the other triple pattern of the initial query, which will
result in relaxed queries that fail. Thus, MBS will execute more queries than
O-MBS and its execution time will be significantly longer.

Our last algorithm F-MBS always executes an equal or superior number of
queries compared to O-MBS. This behavior is explained by the fact that the
number of queries executed to find the MFSs of the relaxed queries is greater
than the number of queries pruned in the relaxation graph (thanks to MFSs).
We illustrate this fact with Q7. O-MBS executes 25 relaxed queries and 52
queries for computing the MFSs while F-MBS only executes 7 relaxed queries
but 74 to compute all the MFSs. In some queries such as Q6, this difference
impacts negatively the execution time of F-MBS in comparison with O-MBS.

Experiment 2. In the second experiment, we have evaluated the impact
of the triplestore on the performance of our algorithms. Figure 6 presents the
execution time of the different algorithms run on top of Virtuoso in the same
conditions as the previous experiment. Again, we can observe that our algo-

rithms perform better than BFS. For this latter algorithm, the query Q6 and
Q7 took more than 1 hour to execute and thus their execution times are not
shown. Even if the trends observed on Jena TDB are confirmed on Virtuoso,
the execution times of the algorithms on Virtuoso differ significantly from the
ones obtained with Jena TDB. For Q1 and Q4 the execution times are better on
Virtuso and conversely for other queries. This is in agreement with the findings
of several benchmarks (e.g., [14]) that no triplestore is superior for all queries.

Experiment 3. In the last experiment we have evaluated the scalability
of our algorithms when the size of the dataset increases. This experiment was
run on Jena TDB with k set to 50. Figure 7 presents the execution time of
the different algorithms for the query Q5 when the dataset ranges from 17M
to 167M triples. In this experiment, the algorithms scale almost linearly with
the size of the repository. We obtained the same result for other queries. As
the LUBM generates data that have proportionally similar statistics, our queries
have the same MFSs on the different repositories and the same relaxed queries
are executed in the same order. As the execution times of the queries scale
linearly with the size of the datasets, this explain the result of this experiment.

Q1 Q2 Q3 Q4 Q5 Q6 Q7
BFS 0,2 0,07 21,52 5,76 12,66 ‐ ‐
MBS 0,20 0,07 1,54 4,06 0,71 5,33 9,44
O‐MBS 0,04 0,06 1,37 0,74 0,79 2,19 6,33
F‐MBS 0,04 0,06 1,37 0,95 1,05 4,24 4,61

0

5

10

15

20

Ti
m
e
(s
ec
)

Fig. 6. Execution time (Virtuoso)

0

5

10

15

20

25

30

35

40

17M 42M 83M 125M 167M

Ti
m
e
(s
ec
)

Number of Triples (Million)
BFS MBS O‐MBS F‐MBS

Fig. 7. Execution time vs data size (Jena)

6 Related Work

We provide here a review of the closest approaches related to our proposal both
in the context of RDF and relational databases. In the first setting, Hurtado et
al. [4] propose a relaxation approach based on the inferences rules of RDFS. This
approach leverages the subClassOf, subPropertyOf, domain and range relation-
ships of RDFS to relax a SPARQL query. The end-user can choose the triples
that must be relaxed in a query by using the RELAX clause. Huang et al. [5]
use the same relaxation techniques based on RDFS entailment. To ensure qual-
ity of alternative answers, they leverage a semantic similarity measure based on
concept statistics. Several optimization techniques are also proposed to obtain

the top-k approximate answers efficiently. Elbassuoni et al. [9] show a process
for finding similar values of a precise value needed for a query relaxation.

In our previous work [6], we have proposed a set of primitive relaxation
operators and have shown how these operators can be integrated in SPARQL in
a simple or combined way. Cali et al. [7] have also extended a fragment of this
language with query approximation and relaxation operators. As an alternative
to query relaxation, query auto-completion techniques check the data during
query formulation to avoid empty answers (e.g., [15]). It is worth noticing that
none of the above approaches has considered the issue related to the causes of
an RDF query failure and thus the issue of MFS computation. In our recent
work [11], we have addressed this issue but only for providing users with some
explanation about this failure.

As for relational databases, many approaches have been proposed for query
relaxation (see Bosc et al. [16] for an overview). In particular, Godfrey [12] has
defined the algorithmic complexity of the problem of identifying the MFSs of
failing relational queries and developed the ISHMAEL algorithm for retrieving
them. Jannach [17] studied the concept of MFS in the recommendation system
setting. The MFSs computed are used to relax the query at hand by removing
some parts of the query. Bosc et al. [16] and Pivert et al. [18] extended Godfrey’s
approach to the fuzzy queries context. In [16], to speed up the relaxation pro-
cess, the authors attempt to leverage the MFSs when relaxing the failing query.
Unfortunately, this approach does not work in all situations (e.g., when the set
of MFSs of the relaxed query is not subsumed by the one of the original query).

As it can be seen, the MFS paradigm has never been used to guide the
relaxation process in the context of RDF. To the best of our knowledge, this is
the first attempt towards an MFS-driven relaxation of RDF queries.

7 Conclusion and Perspectives

In this paper, we have proposed three strategies to relax an RDF query. Their
originalities is that they use different levels of information about the FCs of the
initial query and its relaxed queries. In the first strategy, named MBS, only
the FCs of the initial query are used to prune from the search space all the
relaxed queries that include FCs. The second strategy named O-MBS extends
the previous one by searching the FCs that remain in the relaxed query. In this
strategy, all the FCs of a relaxed query are not necessarily discovered. Our last
strategy named F-MBS fills this gap by using an optimized version of a previous
work algorithm to find the FCs of the relaxed queries.

We have run several experiments on the LUBM benchmark with two triple-
stores to compare these strategies with a state-of-the-art strategy, which consists
in executing the relaxed queries in their ranking order. In these experiments,
our best strategy O-MBS outperforms it by more than a factor of 2. O-MBS is
a good compromise between MBS, which often does not use enough information
about the FCs, and F-MBS which uses too much information about them.

This paper opens many perspectives. As our approach is defined for con-
junctive RDF queries, we plan to extend it to support other SPARQL queries.
Studying the relevance of our strategies when they are applied on other query
relaxation models that use different relaxation operators is another perspective.
As our strategies gather a lot of information about the failure of many queries,
we intend to design an interactive approach based on our strategies. Finally, we
plan to investigate whether the FCs of a query could be used in conjunction with
other cooperative techniques that aim at handling the empty-answer problem.

References

1. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N.,
Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-
scale, multilingual knowledge base extracted from Wikipedia. Semantic Web 6(2)
(2015) 167–195

2. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann,
T., Sun, S., Zhang, W.: Knowledge Vault: A Web-scale Approach to Probabilistic
Knowledge Fusion. In: ACM SIGKDD. (2014) 601–610

3. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.N.: LSQ: the linked
SPARQL queries dataset. In: The Semantic Web - ISWC. (2015) 261–269

4. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query Relaxation in RDF. Journal
on Data Semantics X 10 (2008) 31–61

5. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases.
Journal of World Wide Web 15(1) (2012) 89–114

6. Fokou, G., Jean, S., Hadjali, A.: Endowing Semantic Query Languages with
Advanced Relaxation Capabilities. In: ISMIS’14. (2014) 512–517

7. Caĺı, A., Frosini, R., Poulovassilis, A., Wood, P.: Flexible Querying for SPARQL.
In: ODBASE’14. (2014) 473–490

8. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries
based on user and domain preferences. IJIIS 33(3) (2009) 239–260

9. Elbassuoni, S., Ramanath, M., Weikum, G.: Query Relaxation for Entity-
Relationship Search. In: ESWC’11. (2011) 62–76

10. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards Fuzzy Query-
Relaxation for RDF. In: ESWC’12. (2012) 687–702

11. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Cooperative techniques for SPARQL
query relaxation in RDF databases. In: ESWC’15. (2015) 237–252

12. Godfrey, P.: Minimization in Cooperative Response to Failing Database Queries.
International Journal of Cooperative Information Systems 6(2) (1997) 95–149

13. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL.
ACM Transaction on Database Systems 34(3) (2009) 16:1–16:45

14. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. Semantic Web and
Information Systems 5(2) (2009) 1–24

15. Campinas, S.: Live SPARQL Auto-Completion. In: ISWC’14 (Posters & Demos).
(2014) 477–480

16. Bosc, P., Hadjali, A., Pivert, O.: Incremental controlled relaxation of failing
flexible queries. JIIS 33(3) (2009) 261–283

17. Jannach, D.: Fast computation of query relaxations for knowledge-based recom-
menders. AI Communications 22(4) (2009) 235–248

18. Pivert, O., Smits, G., Hadjali, A., Jaudoin, H.: Efficient Detection of Minimal
Failing Subqueries in a Fuzzy Querying Context. In: ADBIS’11. (2011) 243–256

