
On the correctness of
“Gang EDF Scheduling of Parallel Task Systems”

(Kato, Ishikawa, RTSS’09)

Pascal Richard(1), Joël Goossens(2)

(1)LIAS/University of Poitiers, France
(2)Université libre de Bruxelles (ULB), Belgium

Abstract

This short note describes two correctness problems in the paper entitled “Gang EDF
Scheduling of Parallel Task Systems”, Shinpei Kato and Yutaka Ishikawa, presented
at RTSS’09.

Key words: Real-time Gang Scheduling, Schedulability Test, Gang EDF Algorithm

1 Introduction

This note focuses on real-time Gang Scheduling of real-time tasks upon multi-
processor platforms. We raise two correctness issues in the schedulability test
presented in [2]: “Gang EDF Scheduling of Parallel Task Systems”, Shinpei
Kato and Yutaka Ishikawa, presented at RTSS’09.

This paper deals with preemptive scheduling of parallel real-time tasks on
identical multiprocessor platforms. In this parallel task model, job parallelism is
allowed meaning that a job is simultaneously executed on different processors.
The task parallelism is said rigid since the tasks always simultaneously use a
predefined number of processors. This model is also named Gang scheduling
in the literature. The classical task model is a particular case of the Gang
scheduling one in which every task uses exactly one processor.

The paper [2] presents a Gang scheduling algorithm named Gang EDF and
its schedulability test named [KAT] in the following. This schedulability test

Email address: pascal.richard@univ-poitiers.fr;
joel.goossens@ulb.ac.be (Pascal Richard(1), Joël Goossens(2)).

Research Report - 29 April 2016 - LIAS/Isae-Ensma and University of Poitiers



extends the techniques used in Global EDF schedulability [1] (named [BAR]
in the following) to Gang real-time tasks. The very attractive idea behind the
Gang test [KAT] is: if all tasks use exactly one processor, then the Gang test
is equivalent to [BAR].

In this note, we show through counterexamples that the test is not correct on
its principle. The test is based on a necessary condition for a task to miss a
deadline that is erroneous. Furthermore, the time interval considered to check
the schedulability of a Gang task is not valid when some tasks simultaneously
use several processors. From our understanding, [KAT] is valid and fully equiv-
alent to [BAR] when all the tasks use a single processor at a time (i.e., in the
classical task model).

In the following, Section 2 recalls the task model and Section 3 summarizes the
main principles of [KAT]. Section 4 presents a counterexample showing that
(i) the necessary condition to check if a task misses its deadline is not correct
and (ii) the time interval considered in the test is not valid in the general case
in which tasks are allowed to use simultaneously several processors. Lastly,
Section 5 provides a short discussion for concluding.

2 The Gang scheduling model

[KAT] considers rigid parallel tasks, named hereafter Gang, to be executed
upon m identical processors.

2.1 Task model

Let τ = {τ1, . . . , τn} be a set of n sporadic tasks with τi = (vi, Ci, Di, Ti) is
characterized by the number vi of used processors, a worst-case execution time
Ci when executed in parallel on vi processors, a minimum inter-arrival time Ti
and a constrained relative deadline Di (i.e., Di ≤ Ti). The utilization of τi is
Ui = Ci/Ti.

Each task generates an infinite sequence of jobs. The execution of a job of τi
is represented as a Ci×vi rectangle in time × processor space. Every job must
be completed by its deadline.

2



2.2 Gang EDF

Gang EDF is a priority scheme which applies EDF (Earliest Deadline First)
basically in the same way as the classical Global EDF: jobs with earlier dead-
lines are assigned higher priorities. At most m processors are used by Gang
tasks at any time. Clearly, Gang EDF is equivalent to Global EDF if every
task uses a single processor (i.e., vi = 1, 1 ≤ i ≤ n).

3 [KAT] schedulability test

In this section, we present the main principles of the Gang EDF schedulability
test [KAT]. The presented materials come from [2].

3.1 Test principles

[KAT] is a generalization of [BAR]. [BAR] is a schedulability test based on
a time demand analysis for Global EDF. Basically, the test exhibits a neces-
sary schedulability condition on the parameters of all the tasks that must be
satisfied in order to exhibit a deadline miss for a given job (i.e., the problem
job). Then, the contrapositive yields a sufficient schedulability condition for the
considered scheduling algorithm.

[KAT] test considers any legal sequence of job request of task system τ on
which a deadline is missed by Gang EDF. Assume that τk is generating the
problem job at time ta that must be completed by its deadline at time td =
ta + Dk . Let t0 be the latest time instant before or at ta at which at least vk
processors are idled and ∆k = td − t0. A necessary condition for the problem
job to miss its deadline is: higher priority tasks are blocking τk for strictly
more that Dk − Ck in the interval [ta, td). Since τk requires vk processors, it
is blocked while m − vk + 1 processors are busy. This minimum interference
necessary for the deadline miss is defined by the interference rectangle whose
width wk and height hk are respectively given by:

wk = ∆k − Ck (1)
hk =m− vk + 1 (2)

Let Ik (τi,∆k ) be the worst-case interference against the problem job over [t0, td),
meaning that it blocks the problem job over [ta, td) and is executed over [t0, ta).

3



If the problem job misses its deadline, then it is necessary that the total amount
of work that interferes over [t0, td) exceeds the interference rectangle:

∑

τi∈τ

Ik (τi,∆k ) > wk × hk (3)

Notice hk is fixed while wk is not (since ∆k is not determined). Thus, the
previous condition must be checked for all values of ∆k . ∆k will be proved to
be bounded in practice (described next in Section 3.2).

The interference must take into account carry-in jobs in the interference rect-
angle who arrive before t0 and have not completed execution by t0. Following
[BAR], the [KAT] test distinguishes the interference coming from tasks with-
out or with a carry-in job, respectively denoted I1(τi,∆k ) and Icarry−in. Several
bounds of these interference contributions are defined (Section 4.1 and 4.3
in [2]). The schedulability test [KAT] checks a task system by using the fol-
lowing result:

Theorem 1 It is guaranteed that a task system τ is successfully scheduling
by Gang EDF upon m processors, if the following condition is satisfied for all
tasks τk ∈ τ and all ∆k ≥ Dk :

∑

τi∈τ

I1(τi,∆k ) + Icarry−in ≤ wk × hk (4)

Several bounds have been proposed in [2] to evaluate the accumulated inter-
ference

∑
τiinτ Ik (τi,∆k ). We limit ourselves to use the first proposed bound

(named Simple Bounds and defined by Equation (6) in [2]):

I1(τi) =min(hbf(τi,∆k ), wk )× min(vi, hk ) if i 6= k
I1(τi) =min(hbf(τi,∆k )− Ck , Ak )× min(vi, hk ) if i = k

with Ak = ∆k−Dk that defines the maximum contribution of τk in the feasibility
interval [t0, td). We recall that the horizontal demand bound function defined
in Equations (1-2) in [2]:

dbf(τi, L) =max
(

0,
⌊
L − Di

Ti

⌋
+ 1
)
× Ci × vi

hbf(τi, L) = dbf(τi, L)×
1
vi

Consequently, we can simplify as: hbf(τi, L) = max
(
0,
⌊
L−Di
Ti

⌋
+ 1
)
× Ci.

4



This result stated in Theorem 1 defines the basis of the [KAT] schedulability
test and it is not formally proved in the paper [2].

3.2 Bounding feasibility interval

In order to use the test (Theorem 1), ∆k must be bounded to define a finite
time interval to test possible values for ∆k . The upper bound presented in [2]
and presented hereafter leads to a pseudo-polynomial schedulability test.

Theorem 2 If Condition (4) is to be violated for any ∆k , then it is violated for
some ∆k ≥ Dk satisfying Condition (5), where Ccarry−in denotes

∑
τi∈τcarry−in Ci.

∆k ≤
hkCk −

∑
τi∈τ(Di − Ti)Ui × min(vi, hk ) + Ccarry−in
hk −

∑
τi∈τ Ui × min(vi, hk )

(5)

where τcarry−in is the set of tasks with a carry-in job.

The proof provided in [2] comes from a classical linearization of the floor func-
tions starting from the schedulability condition:

∑

τi∈τ

hbf(τi,∆k )× min(vi, hk ) + Ccarry−in > wk × hk (6)

4 Correctness problems

4.1 Necessary Condition (3) is not valid

We next show that the necessary condition stated in the Inequality 3 is not
valid. Let us consider the task set defined in Table 1 and a platform with 2
processors. A Gang EDF schedule is depicted in Figure 1 (the synchronous pe-
riodic case) and this task set is feasible for all possible task release scenarios.
Please notice that the task set schedulability is not mandatory for exhibiting
the correctness problem.

We analyze the task τ2 in task set of Table 1: k = 2. τ2 is the problem
job. The feasibility interval is delimited by: t0 = ta = 0 and td = D2 = 4;
∆2 = td − t0 = 4 and A2 = ∆2 − D2 = 0. The scenario ∆2 = D4 is the first
scheduling point considered in Theorem 1. There is no carry-in job in this
example since we analyze the first job of τ2. The interference rectangle is:

5



Tasks vi Ci Di Ti

τ1 1 2 4 4

τ2 2 2 4 4

τ3 1 1 4 4
Table 1
Gang task set for counter-example 1 to be executed upon a 2-processor platform

0 1 2 3 4

π1 τ1 τ2

π2 τ3 τ2

Fig. 1. Gang EDF schedule for the task set defined in Table 1

w2 = ∆2 − C2 = 4− 2 = 2
h2 =m− v2 + 1 = 2− 2 + 1 = 1

Let us now compute the demand bound functions for the tasks in the counter
examples:

hbf(τ1,∆2) =max
(

0,
⌊

4− 4
4

⌋
+ 1
)
× 2 = 2

hbf(τ2,∆2) =max
(

0,
⌊

4− 4
4

⌋
+ 1
)
× 2 = 2

hbf(τ3,∆2) =max
(

0,
⌊

4− 4
4

⌋
+ 1
)
× 1 = 1

Now we compute the interference bounds:

I1(τ1,∆2) =min(2, 2)× min(1, 1) = 2
I2(τ2,∆2) =min(2− 2, 4− 4)× min(2, 1) = 0
I3(τ3,∆2) =min(1, 2)× min(1, 1) = 1

Hence, the total cumulative interference is:

∑

τi∈τ
I1(τi) = 3 > w2 × h2 = 2

According to the previous inequation, τ2 necessarily misses its deadline, which
is not correct.

6



4.2 The feasibility interval is not valid

From our understanding, all mathematical derivations performed in the proof
of Theorem 2 in [2] are correct. Nevertheless, we will exhibit a problem that
comes from the starting assumption defined in Inequality (6). The reader can
refer to [2] for the definition of Ccarry−in 1 . Next, we will only use the fact that
Ccarry−in ≥ 0 (i.e., a carry-in job can only define an interference greater than
or equal to zero to the problem job).

In Theorem 2, the numerator is always a positive value since Di ≤ Ti, 1 ≤ i ≤ n,
and all used values are positive or zero. Thus, the numerator is always a positive
value. Using a counterexample, we will see that the denominator is not always
positive. As a consequence, this raises a correctness issue for applying the
schedulability test over a time interval which has a negative length.

Consider the task set τ = {τ1, τ2, τ3}, τ1 = (1, 3, 4, 4), τ2 = (2, 1, 4, 4) and
τ3(1, 2, 4, 4) to be executed upon m = 2 processors. For testing task τ2 using
Theorem 1, we need to bound ∆2 using Theorem 2. We prove hereafter that
such a bound is negative for the counterexample.

Consider the denominator of Inequality (5): hk −
∑

τi∈τ Ui × min(vi, hk ). For
task τ2, we first compute h2 = m − v2 + 1 = 2 − 2 + 1 = 1; this implies that
min(vi, h2) = 1, 1 ≤ i ≤ n and thus h2 −

∑
τi∈τ Ui = 1− (3

4 + 1
4 + 2

4 ) = −1
2 . As

a consequence the denominator is negative. Thus, the upper bound computed
by Theorem 2 of the time interval while checking the schedulability of a task
has a negative length which is not valid in with respect to the schedulability
test defined in Theorem 1.

5 Conclusion

We exhibited two correctness problems in this note. The first one concerns
necessary condition (3) and the arguments used to compute the contribution
to the called interference rectangle. The second one concerns the feasibility
interval. As previously said, the mathematical derivations in the proof of the
Theorem 2 are valid. Nevertheless, the Inequality (6) used as a schedulability
condition for computing an upper bound of ∆k leads to a correctness problem
of Theorem 2. Currently, we have not been able to fix these problems to repair
the test.

Notice that if every task verifies vi = 1, 1 ≤ i ≤ n, then [KAT] is the equivalent

1 based on an a knapsack-based heuristic for selecting worst-case interference gen-
erated by the tasks — those tasks are in the set τcarry−in in Theorem 2

7



to [BAR]. But, the generalization proposed in [2] seems not to be as simple as
expected to cope with general gang task systems.

References

[1] Baruah, S. Techniques for multiprocessor global schedulability analysis. In
28th IEEE International Real-Time Systems Symposium, 2007 (December 2007),
pp. 119–128.

[2] Kato, S., and Ishikawa, Y. Gang EDF scheduling of parallel task systems. In 30th
IEEE Real-Time Systems Symposium, 2009 (December 2009), pp. 459–468.

8


