

AS

Scheduling with preemption delays: anomalies and issues

PHAVORIN Guillaume¹ RICHARD Pascal¹ GOOSSENS Joël² CHAPEAUX Thomas² MAIZA Claire³

> ¹LIAS/Université de Poitiers {guillaume.phavorin,pascal.richard}@univ-poitiers.fr

RTNS 2015 ²PARTS/Université Libre de Bruxelles {*joel.goossens,thomas.chapeaux*}@ulb.ac.be

³Verimag/Université Grenobles-Alpes *claire.maiza@imag.fr*

November 5th, 2015

RTNS

Context

hard real-time scheduling

 \hookrightarrow common assumption for a long time: preemption costs = 0

Context

hard real-time scheduling

 \hookrightarrow common assumption for a long time: preemption costs = 0

• components off-the-shelf (COTS) in embedded systems:

• components off-the-shelf (COTS) in embedded systems:

Scheduling with preemption delays: anomalies and issues

Scheduling with preemption delays: anomalies and issues

Outline

Goal: Study the impact of CRPDs on hard real-time scheduling.

- sustainability of classic online scheduling policies subjected to CRPDs?
- > **optimal** online CRPD-aware scheduling policy?
- loss of schedulability of classic online scheduling policies subjected to CRPDs?

Related Work

Introductior

Related Work

- Online scheduling with CRPDs
 - Sustainability analyses
 - Optimal online scheduling
- An offline solution

EvaluationResults

• Results

Conclusion

Online scheduling with CRPDs

Introduction

2 Related Work

3 Online scheduling with CRPDs

- Sustainability analyses
- Optimal online scheduling
- An offline solution

Evaluation

Results

Conclusion

CRPD-aware task model

Periodic synchronously released tasks

$au_i(C_i, D_i, T_i, \gamma_i)$:

- \succ C_i : WCET without CRPD
 - $\,\, \hookrightarrow \,\, au_i$ executed fully non preemptively
- \succ T_i : period
- \succ D_i : relative deadline
 - \hookrightarrow implicit deadline $D_i = T_i$ or constrained deadline $D_i \leq T_i$
- > γ_i : CRPD paid by τ_i each time it resumes its execution after a preemption
 - $\,\hookrightarrow\,$ max. delay for every possible preemption point in the task code

 \rightarrow infinite sequence of jobs: $\tau_{ij}(r_{ij} = (j-1) \cdot T_i, C_i, d_{ij} = r_{ij} + D_i, \gamma_i)$

Online scheduling with CRPDs:

- EDF and FP scheduling algorithms (RM, DM) \rightarrow not optimal (*Phavorin et al. 2015*)
- for FP scheduling: synchronous releases → not necessarily the critical instant worst-case scenario (Ramaprasad et al. 2006, Meumeu et al. 2007)

Sustainability

Sustainability: (Burns et al. 2008)

A scheduling policy is *sustainable* if any system deemed schedulable remains schedulable if:

- a WCET is decreased
- a period is increased
- a relative deadline is increased

Online scheduling without CRPD:

- $\bullet~{\rm EDF} \rightarrow w.r.t:~{\rm WCET},$ deadline, period
- FP scheduling policies (RM, DM) \rightarrow sustainable w.r.t.: WCET, deadline BUT NOT period

Sustainability

Sustainability:

A scheduling policy is *sustainable* if any system deemed schedulable remains schedulable if:

- a WCET is decreased
- a period is increased
- a relative deadline is increased
- a CRPD is decreased

Online scheduling without CRPD:

I Online scheduling with CRPDs
► EDF and FP scheduling NOT SUSTAINABLE JET, deadline BUT NOT period

Sustainability w.r.t the WCET

$\tau_i(C_i, D_i, T_i, \gamma_i)$:

- $\tau_1(1,4,4,0.6)$, $\tau_2(3,12,12,0.6)$, $\tau_3(3,12,12,0.6)$, $\tau_4(2,12,12,0.6)$
 - \hookrightarrow EDF, RM, DM \rightarrow same job priority assignment (task index as tie breaker).

 \rightarrow schedule with $C_2 = 3$

Sustainability w.r.t the WCET

 $\tau_i(C_i, D_i, T_i, \gamma_i)$:

- $\tau_1(1,4,4,0.6)$, $\tau_2(3,12,12,0.6)$, $\tau_3(3,12,12,0.6)$, $\tau_4(2,12,12,0.6)$
 - \hookrightarrow EDF, RM, DM \rightarrow same job priority assignment (task index as tie breaker).

 \rightarrow schedule with $C_2 = 3$

 \rightarrow schedule with $C_2 = 2$

Sustainability w.r.t the deadline

- $\tau_1(1,3,4,1)$, $\tau_2(2,4,6,1)$, $\tau_3(3,6,12,1)$
 - \hookrightarrow EDF \rightarrow same job priority assignment (task index as tie breaker).

 \rightarrow EDF schedule with $D_3 = 6$

Sustainability w.r.t the deadline

 $\tau_i(C_i, D_i, T_i, \gamma_i)$:

- $au_1(1,3,4,1)$, $au_2(2,4,6,1)$, $au_3(3,6,12,1)$
 - \hookrightarrow EDF \rightarrow same job priority assignment (task index as tie breaker).

Sustainability w.r.t the CRPD

- $\tau_i(C_i, D_i, T_i, \gamma_i)$:
 - $\tau_1(1,4,4,1)$, $\tau_2(3,12,12,1)$, $\tau_3(3,12,12,1)$, $\tau_4(2,12,12,1)$
 - \hookrightarrow EDF, RM, EDF \rightarrow same job priority assignment (task index as tie breaker).

ightarrow schedule with $\gamma_3=1$

Sustainability w.r.t the CRPD

- $\tau_i(C_i, D_i, T_i, \gamma_i)$:
 - $\tau_1(1,4,4,1)$, $\tau_2(3,12,12,1)$, $\tau_3(3,12,12,1)$, $\tau_4(2,12,12,1)$
 - \hookrightarrow EDF, RM, EDF \rightarrow same job priority assignment (task index as tie breaker).

 \rightarrow schedule with $\gamma_3 = 1$

 \rightarrow schedule with $\gamma_3 = 0.6$

Online scheduling of a set of jobs

• Online scheduling model:

➤ set of jobs released over time

> at each job release, all its parameters are known

 \rightarrow optimal online scheduling policy?

Online scheduling of a set of jobs

• Online scheduling model:

> set of jobs released over time

> at each job release, all its parameters are known

 \rightarrow optimal online scheduling policy?

Result: Optimal online scheduling is impossible

Job release times need to be known a priori to define an optimal online scheduler (i.e., clairvoyant).

Proof sketch

Optimal offline scheduler (a.k.a. the adversary) generates jobs so that any online scheduler cannot define a feasible schedule whereas the adversary can.

Jobs: $\tau_1(0,5,12,1), \tau_2(4,5,10,1) \rightarrow$ scheduling decision at t = 4

Adversary strategy:

> At time 4:

Case 1: the online scheduler **continues** to execute τ_1 \hookrightarrow the adversary generates a new job $\tau_3(9,1,10,1)$

Case 2: the online scheduler **preempts** τ_1 to execute τ_2 \hookrightarrow the adversary generates a new job $\tau_3(10,1,11,1)$

Proof sketch

Optimal offline scheduler (a.k.a. the adversary) generates jobs so that any online scheduler cannot define a feasible schedule whereas the adversary can.

Jobs: $\tau_1(0,5,12,1), \tau_2(4,5,10,1) \rightarrow$ scheduling decision at t = 4

Case 1. The online scheduler continues to execute job τ_1 at time 4. Adversary generates a job $\tau_3(9,1,10,1)$.

 $[\]rightarrow$ Online algorithm

Proof sketch

Optimal offline scheduler (a.k.a. the adversary) generates jobs so that any online scheduler cannot define a feasible schedule whereas the adversary can.

Jobs: $\tau_1(0,5,12,1), \tau_2(4,5,10,1) \rightarrow$ scheduling decision at t = 4

Case 1. The online scheduler continues to execute job τ_1 at time 4. Adversary generates a job $\tau_3(9,1,10,1)$.

Proof sketch

Optimal offline scheduler (a.k.a. the adversary) generates jobs so that any online scheduler cannot define a feasible schedule whereas the adversary can.

Jobs: $\tau_1(0,5,12,1), \tau_2(4,5,10,1) \rightarrow$ scheduling decision at t = 4

Case 2. the online scheduler preempts τ_1 to execute at time 4 τ_2 . Adversary generates a job $\tau_3(10,1,11,1)$.

 \rightarrow Online algorithm

Proof sketch

Optimal offline scheduler (a.k.a. the adversary) generates jobs so that any online scheduler cannot define a feasible schedule whereas the adversary can.

Jobs: $\tau_1(0,5,12,1), \tau_2(4,5,10,1) \rightarrow$ scheduling decision at t = 4

Case 2. the online scheduler preempts τ_1 to execute at time 4 τ_2 . Adversary generates a job $\tau_3(10,1,11,1)$.

 \rightarrow Online algorithm

 \rightarrow Adversary's feasible schedule

An offline solution

Introduction

2 Related Work

- Online scheduling with CRPDs
 - Sustainability analyses
 - Optimal online scheduling

An offline solution

EvaluationResults

Conclusion

Offline scheduling

• set of tasks $au_i(C_i, D_i, T_i, \gamma_i)$

 $\,\hookrightarrow\,$ find a valid schedule whenever it is possible.

Offline scheduling

• set of tasks $au_i(C_i, D_i, T_i, \gamma_i)$

 $\,\hookrightarrow\,$ find a valid schedule whenever it is possible.

 \rightarrow Mixed Integer Linear Program (MILP) formulation

Objective function \rightarrow define an offline schedule to:

➤ minimize the total workload

or equivalently, minimize the total CRPD (since the WCET contributes as a constant in the objective function)

Schedule construction:

- schedule:
 - > finite set of slices S_j ,
 - separated by releases/deadlines
 - \Rightarrow no job release inside a slice
- in every slice:
 - $\rightarrow\,$ job-piece execution times $+\,$ related $_{\rm CRPDs}$ must fit in the slice interval

Every job resumes <u>at most once</u> in every slice.

Schedule construction:

- schedule:
 - > finite set of slices S_j ,
 - separated by releases/deadlines
 - \Rightarrow no job release inside a slice
- in every slice:
 - $\rightarrow\,$ job-piece execution times $+\,$ related CRPDs $\underline{must\ fit}$ in the slice interval

Every job resumes <u>at most once</u> in every slice.

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

Schedule construction:

- schedule:
 - > finite set of slices S_j ,
 - separated by releases/deadlines
 - \Rightarrow no job release inside a slice
- in every slice:
 - $\rightarrow\,$ job-piece execution times $+\,$ related CRPDs must fit in the slice interval

Every job resumes <u>at most once</u> in every slice.

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

 $\hookrightarrow S_4 = [9, 12)$

Schedule construction:

- schedule:
 - \succ finite set of slices S_i ,
 - separated by releases/deadlines
 - \Rightarrow no job release inside a slice
- in every slice:
 - \rightarrow job-piece execution times + related CRPDs must fit in the slice interval

Every job resumes at most once in every slice.

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2) Task 2 (7,12,12,0.5)

slice	job	
1	$ au_1$	
1	τ_5	
2	τ_5	
2	$ au_2$	
3	τ_3	
3	$ au_5$	
4	τ_5	
4	$ au_4$	

 \rightarrow 4 Slices: \hookrightarrow $S_1 = [0, 3)$ \hookrightarrow S₂=[3,6) \hookrightarrow S₃=[6,9) \hookrightarrow S₄=[9,12)

 \rightarrow 8 job-pieces

Schedule construction:

- MILP variables fore each slice S_j :

 - > $p_{i,j} \in \mathbb{R}$ → execution time of job-piece τ_i in S_j
 - > $\Delta_{i,j} \in \{0,1\}$ → job-piece has to pay a CRPD in S_j.

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

job	slice	$t_{i,j}$	$p_{i,j}$	$\Delta_{i,j}$
1	$ au_1$			
1	$ au_5$			
2	τ_5			
2	$ au_2$			
3	$ au_3$			
3	$ au_5$			
4	τ_5			
4	$ au_4$			

Schedule construction:

- MILP variables fore each slice S_j :
 - > $t_{i,j} ∈ ℝ →$ starting time of job-piece $τ_i$ in S_j
 - > $p_{i,j} ∈ ℝ →$ execution time of job-piece $τ_i$ in S_j
 - > $\Delta_{i,j} \in \{0,1\}$ → job-piece has to pay a CRPD in S_j.

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

Constraints \rightarrow construct a valid schedule:	job
\succ each job is executed for its WCET	1
South job is executed between its	2
release and its deadline	2
release and its deadline	3
➤ at most one job is executed at any	3
time instant	4

job	slice	$t_{i,j}$	$p_{i,j}$	$\Delta_{i,j}$
1	τ_1	0	1	0
1	$ au_5$	1	2	0
2	τ_5	3	2	0
2	$ au_2$	5	1	0
3	$ au_3$	6	1	0
3	$ au_5$	7.5	1	1
4	$ au_5$	9	2	0
4	$ au_4$	11	1	0

Scheduling with preemption delays: anomalies and issues

Schedule construction:

- MILP variables fore each slice S_j :

 - > $p_{i,j} \in \mathbb{R}$ → execution time of job-piece τ_i in S_j
 - > $\Delta_{i,j} \in \{0,1\}$ → job-piece has to pay a CRPD in S_j.

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

Constraints \rightarrow construct a valid schedule:	job	slice
	1	$ au_1$
\succ each job is executed for its WCET	1	τ_5
\succ each job is executed between its	2	τ_5
	2	$ au_2$
release and its deadline	3	$ au_3$
\succ at most one job is executed at any	3	$ au_5$
	4	τ_5
time instant	4	$ au_4$

job	slice	$t_{i,j}$	$p_{i,j}$	$\Delta_{i,j}$
1	$ au_1$	0	1	0
1	$ au_5$	1	2	0
2	τ_5	3	2	0
2	$ au_2$	5	1	0
3	$ au_3$	6	1	0
3	$ au_5$	7.5	1	1
4	τ_5	9	2	0
4	$ au_4$	11	1	0

Scheduling with preemption delays: anomalies and issues

Schedule construction:

- MILP variables fore each slice S_j :
 - > $t_{i,j} \in \mathbb{R} \to \text{starting time of}$ job-piece τ_i in S_j
 - > $p_{i,j} \in \mathbb{R}$ → execution time of job-piece τ_i in S_j
 - ➤ $\Delta_{i,j} \in \{0,1\} \rightarrow \text{job-piece has to}$ pay a CRPD in S_j .

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)

Constraints \rightarrow construct a valid schedule:	job
	1
\succ each job is executed for its WCET	1
> anch job is avacuted between its	2
each job is executed between its	2
release and its deadline	3
\succ at most one job is executed at any	3
	4
time instant	4

job	slice	$t_{i,j}$	$p_{i,j}$	$\Delta_{i,j}$
1	τ_1	0	1	0
1	$ au_5$	1	2	0
2	τ_5	3	2	0
2	$ au_2$	5	1	0
3	$ au_3$	6	1	0
3	$ au_5$	7.5	1	1
4	τ_5	9	2	0
4	$ au_4$	11	1	0

Schedule construction:

- MILP variables fore each slice S_j :
 - > $t_{i,j} \in \mathbb{R} \to \text{starting time of}$ job-piece τ_i in S_j
 - > $p_{i,j} ∈ ℝ →$ execution time of job-piece $τ_i$ in S_j
 - ➤ $\Delta_{i,j} \in \{0,1\} \rightarrow \text{job-piece has to}$ pay a CRPD in S_j .

Exple: 2 periodic tasks within [0,12)

Task 1 (1,3,3,0.2)
Task 2 (7,12,12,0.5)

Constraints \rightarrow construct a valid schedule [.]	job	slice	$t_{i,j}$	$p_{i,j}$	$\Delta_{i,j}$
	1	τ_1	0	1	0
each job is executed for its WCET	1	$ au_5$	1	2	0
each job is executed between its release and its deadline	2	$ au_5$	3	2	0
	2	$ au_2$	5	1	0
	3	$ au_3$	6	1	0
\succ at most one job is executed at any	3	$ au_5$	7.5	1	1
time instant	4	$ au_5$	9	2	0
time instant		$ au_4$	11	1	0

Scheduling with preemption delays: anomalies and issues

Evaluation

Introduction

2 Related Work

- Online scheduling with CRPDs
 - Sustainability analyses
 - Optimal online scheduling
- An offline solution

Conclusion

Experiments

Goal:

Evaluate the loss of schedulability of classic online scheduling policies.

Experiments

Goal:

Evaluate the loss of schedulability of classic online scheduling policies.

- Synthetic tasksets:
 - > $C_i, T_i \rightarrow \mathsf{UUnifast}$ (Bini et al. 2005)
 - $\,\hookrightarrow\,$ to generate processor utilization factors
 - > $\gamma_i \rightarrow \text{maximum CRPD}$ Factor (PDF): % of C_i

 $\hookrightarrow \gamma_i = \text{PDF} \times C_i$

> limited to 200 jobs over the hyperperiod

 $\,\hookrightarrow\,$ to limit the ${\rm MILP}$ solving time

- Monitored algorithms:
 - ➤ EDF: arbitrary tie breaker
 - LP-EDF: tie breaker avoiding unnecessary preemptions
 - ➤ OPT: MILP solved using CPLEX 12.6.1

EDF schedulability analysis \rightarrow Lunniss et al. 2013

Schedulability

Experiment parameters:

 \succ maximum CRPD Factor (PDF) = 20%,

of schedulable tasksets as a function of the total processor utilization.

Total CRPD

Experiment parameters:

> Total Processor Utilization = 0.8,

Total CRPD over the hyperperiod as a function of maximum PDF.

Conclusions and Future Work

• Conclusions:

- $\bullet~$ scheduling with ${\rm CRPD} \rightarrow$ several issues:
 - classic policies (EDF, RM, DM) not sustainable
 - > no optimal online scheduling policy
- optimal offline scheduling using a MILP formulation
 - evaluation of schedulability loss for EDF

Conclusions and Future Work

- $\bullet~$ scheduling with ${\rm CRPD} \rightarrow$ several issues:
 - classic policies (EDF, RM, DM) not sustainable
 - no optimal online scheduling policy
- optimal offline scheduling using a MILP formulation
 - evaluation of schedulability loss for EDF

• Future work:

- > evaluation of schedulability loss for other policies/techniques
- \succ MILP with a more accurate CRPD parameter \rightarrow **DIFFICULT**
- online scheduling using heuristics

Thank you! Questions?