
Laboratoire d’Informatique et d’Automatique pour les Systèmes

Rapport de Recherche
No 03 - 2015

28/09/2015

Cache-Related Preemption Delays
and Real-Time Scheduling:

A Survey for Uniprocessor Systems
Guillaume PHAVORIN, Pascal RICHARD

ÉCOLE NATIONALE SUPÉRIEURE DE MÉCHANIQUE ET D’AÉROTECHNIQUE - UNIVERSITÉ DE POITIERS

Site du Futuroscope - Téléport 2 - 1 avenue Clément Ader
BP 40109 - 86961 FUTUROSCOPE CHASSENEUIL Cedex - FRANCE

Tél. : +33 (0) 5-49-49-80-63 - FAX : +33 (0) 5-49-49-80-64
Web : http://www.lias-lab.fr

http://www.lias-lab.fr

2

Abstract
The trend in nowadays real-time embedded systems is to use commercial off-the-shelf com-
ponents, and in particular CPUs with cache memories. But because of the way the cache is
working, additional delays known as Cache-Related Preemption Delays (CRPDs) might occur
as soon as preemptive scheduling is considered. These CRPDs make the predictability problem
more complex and may even threaten the system schedulability. This article presents different
existing strategies to deal with CRPD issues. These strategies can focus on reducing the CRPDs
at the cache level or can work at the scheduling level to control the number of preemptions.
Combinations between those different methods are also presented.

CONTENTS

I Introduction 3

II Basic notions 4
II-A Caches . 4
II-B Preemption delays . 4
II-C Scheduling . 5
II-D Evaluation techniques . 5
II-E Technique roadmap . 6

III Timing Analysis 6
III-A General WCET computation issue . 6
III-B WCET cache analysis . 7
III-C Including Cache-Related Preemption Delays into the WCET 8

IV Memory management 9
IV-A Cache partitioning . 9
IV-B Cache locking . 10
IV-C Memory layout . 11

V Enhanced task models 12
V-A Cache-aware scheduling analysis . 12
V-B Limited preemption scheduling . 13
V-C Cache-aware scheduling . 14

VI Prospects 14

VII Conclusion 15

3

Cache-Related Preemption Delays
and Real-Time Scheduling:

A Survey for Uniprocessor Systems
Guillaume Phavorin, Pascal Richard

LIAS/Université de Poitiers
Poitiers, France

{guillaume.phavorin, pascal.richard}@univ-poitiers.fr

I. INTRODUCTION

Nowadays, embedded systems are widely spread. As they
are made of more and more real-time applications, increasing
processing capacity is needed. For uniprocessors, performances
have been increased over the years by speeding up the pro-
cessor frequency and introducing micro-architectural features
such as pipelines and branch prediction. But, as a result,
the gap between the processor speed and the main memory
access time has increased exponentially. So, cache memories
had to be introduced to bridge this gap. As most real-time
applications are critical, it must be proved that they meet
their timing constraints: schedulability tests are used to verify
beforehand the system validity. Moreover, such systems must
be predictable: test results must be valid for the worst-case
possible behaviours.

Real-time embedded systems (RTES) use more and more
commercial off-the-shelf components (COTS) as they allow
significant cost savings, see for example the report from the
Federal Aviation Administration [1]. Most commercial proces-
sors incorporate cache memories to increase performances. But
on the other hand, caches make the predictable problem even
more complex: instruction and data loading depend on whether
the reference is found in the cache or has to be reloaded from
the main memory. Furthermore, because of preemptions, some
data may have been thrashed from the cache and so additional
reloads might be performed from the main memory, leading to
extra delays referred to as Cache-Related Preemption Delays
(CRPDs). These additional delays can represent as much as
40% of a task worst-case execution time (WCET) [82]. The
easiest way to deal with the CRPD matter is to disable the
cache. It is however not always possible on modern hardwares,
and in any case, it leads to a drop in performances.

Usually, in real-time scheduling, hardware-related costs (in-
cluding switch context, scheduler costs, CRPD...) are assumed
to be part of the WCET of each task. So, from the scheduling
point of view, preemptions are performed at no cost. As a
consequence, the scheduling problem becomes easier as task
behaviours are independent from each other. But on the other
hand, this approach often results in overestimated execution
times: WCETs are increased and so is the processor utilization.
That leads to a waste of resources as the system has to be
oversized: task average execution times, because of the cache,

will be far smaller than the WCETs, and as a result the CPU
will be underutilized. So, an other approach is to dissociate
WCETs and CRPD. But as a consequence, task behaviours are
no more independent from each other: a circular dependency is
introduced between the timing analysis and the schedulability
analysis.

To reduce the pessimism introduced by caches, numerous
strategies have been proposed. Some consist only in bounding
the CRPD and incorporate it either directly in the WCET or
rather in the schedulability analysis. Other strategies focus
on reducing such sources of pessimism: the cache behaviour
can be modified to reduce or even eliminate possible cache
thrashing by other tasks, or the scheduling policy can be
adapted to reduce the number of preemptions and/or reducing
the CRPD. Although, many of these methods are mutually
dependant, they have been mostly studied in isolation either
from the timing issue or the schedulability issue.

a) Goal.: So, the purpose of this article is twofold.
First we present the known strategies dealing with the CRPD
problem. Some of them aim at improving cache-related delay
estimation to tighten the bounds on both the WCET and
the CRPD. Other approaches prefer to focus on scheduling
algorithms to avoid costly preemptions whenever it is possible
and as a result increase the system schedulability. Then, we
focus on possible combination between those techniques and
we present the schedulability tests associated with them.

b) Assumptions.: In this paper, for sake of simplicity,
no pipeline is considered. Moreover, we deal only with fully
timing compositional architectures (see the architecture clas-
sification presented in Cullmann et al. [33]), i.e. processors
for which no timing anomaly occurs (see [66] and [98] for
further information on that matter). We also mainly consider
instruction caches as they are more commonly found in embed-
ded architectures than data caches. Finally, we focus on fixed-
task priority scheduling to illustrate the different approaches
presented in this paper.

c) Organization.: This survey is organized in five main
parts. First, we introduce basic notions regarding caches and
real-time scheduling. Then, we present how task worst-case
execution times (WCETs) can be computed when cache mem-
ories are involved. In Section IV, we focus on approaches
to deal with cache issues directly at the memory level. In

4

Section V, we handle the problem of scheduling with cache
issues. Finally, we briefly present some possible combinations
between the different approaches presented before.

II. BASIC NOTIONS

The preemption cost problem can be addressed from dif-
ferent angles. The focus can be on a tight estimation and
possible reduction of the number of preemptions a system may
experience in the worst case. On the other hand, a bound on
the preemption delay can be computed to be later taken into
account in the schedulability analysis. In this paper, we mainly
focus on the latter approach.

We introduce here some basic notions regarding Cache-
Related Preemption Delays (CRPDs). First, we present very
briefly cache memories and how they work. Then, we discuss
the problem of preemption delays and particularly CRPDs. In
a third part, we provide notions about real-time scheduling
and how it can be extended to handle CRPDs. Finally, we
summarize the most common techniques used to evaluate the
different approaches presented hereafter.

A. Caches
Caches are fast accessible memories, much faster than the

main memory but still slower than the registers. They are
used to save data loaded from the main memory. Thus, a later
access to this data by the CPU will be served directly from the
cache (being a cache hit opposed to a cache miss), resulting in
time earning (see [78]) and less power consumption (as stated
in [113]). For example, according to [50], a hit needs between
1 and 4 clock cycles to be served, whereas a miss can cost up to
32 cycles. The effectiveness of caches is based on the principle
of reference locality: a resource is more likely to be referenced
if another resource near to it has been referenced recently
(spatial locality), e.g. sequential instructions, and already-
referenced ressources are more likely to be re-referenced in
a short laps of time (temporal locality), e.g. in loops.

Caches can be classified as instruction caches, data caches
or unified caches depending on the kind of resources they
store: respectively program instructions, program data or both
of them. In this paper, for sake of simplicity and if not stated
otherwise, we only consider one cache level and very often
only instruction caches.

A cache is divided into lines of equal size, each of which
can store one memory block loaded from the main memory.
A memory block is a logical partition of the main memory:
it is the smallest amount of bytes which can be loaded at a
time from the main memory. It can contain several data (for
data caches) or instructions (for instruction caches), to increase
spatial locality. As depicted in Figure 1, different strategies can
be used to decide to which cache line a given memory block
will be mapped:
• direct-mapped caches: a memory block has only one

possible location into the cache, depending on its ad-
dress, as shown in 1(a),

• fully-associative caches: as depicted in 1(b), a memory
block might be mapped to every line, depending on the
cache history and a replacement policy,

cache
Line 0
Line 1
Line 2
Line 3

blocks
0
1
2
3

(a) Direct-mapped
cache

cache
Line 0
Line 1
Line 2
Line 3

blocks
0
1
2
3

(b) Fully-associative
cache

cache
Line 0
Line 1
Line 2
Line 3

blocks
0
1
2
3

(c) Set-associative
cache

Figure 1. Mapping examples for a Direct-Mapped Cache (left), Fully-
Associative Cache (center) and 2-Ways Set-Associative Cache (right)

• set-associative caches, which is the intermediate case:
the cache is divided into sets of equal number of lines
and a given memory block can only be mapped to a
particular set, depending on its address, but then be
placed anywhere into that particular set, depending on
the cache history and a replacement policy, see 1(c).

Details on replacement policies used for set- and fully-
associative caches can be found in [50].

Different metrics have been proposed in the literature to
characterize how the cache behaviour may affect a task. The
simplest one is the task Working Set Size (WSS), introduced
in [34]: it corresponds basically to the amount of cache lines
accessed by the task during its execution. It is however a
raw indicator, representing the average behaviour of a task.
More precise but complex metrics can be used instead: the
Stack Distance (see [74]), which corresponds to the number
of different cache lines accessed between two consecutive
accesses to a same reference, or the Reuse Distance (see [14]),
which is similar to the Stack Distance with the exception
that the constraint of intermediary accesses being mapped to
different cache lines is released. These last two metrics are
particularly useful when dealing with fully- or set-associative
caches.

B. Preemption delays

When a preemption occurs, additional delays have to be
considered alongside the normal execution time of the task, due
to context switches, extra-bus interference cost... (see [27]).
In this paper we only study the cache-related preemption
delay (CRPD) which corresponds to the time needed to reload
cache lines that have been evicted by preempting tasks. Indeed,
other costs are less penalizing and can often be bounded by a
constant (see [7]).

As stated in [13], the interference the cache has on a task
execution time can be:

• intrinsic (referred also to as intra-task): that corresponds
to memory block reloads because of the task structure
and the hardware (multiple instructions or data might be
mapped to the same cache line). Those costs are usually
accounted for directly in the WCET.

• extrinsic (referred also to as inter-task): that corresponds
to the damage due to other tasks that may preempt the
considered task. These costs correspond to the CRPD.

5

Category Technique References Section
sc

he
du

lin
g
←−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−→

tim
in

g

memory
management

cache partitioning fully-partitioning [56, 79, 87, 6] IV-A
hybrid-partitioning [107, 21, 106]

cache locking
full locking static [31, 41, 64, 53]

IV-B
dynamic [10, 88, 89, 53]

partial locking static [35]
dynamic [36]

partitioning + locking [113]

memory layout code positioning [111, 76, 65, 40, 77] IV-C
task positioning [45, 8, 69]

WCET

WCET with cache analysis [118, 49, 39, 109, 92, 100] III-B

WCET with CRPD
preempting task [13, 110]

III-Cpreempted task [102, 3, 28]
both tasks [80, 101, 116]

scheduling

schedulability analysis
preempting task [25, 24]

V-Apreempted task [58]
both tasks [105, 5, 52, 67]

preemption control
preemption thresholds with CRPD [20, 114]

V-Bfloating-Non Preemptive Region with CRPD [93, 73, 72]
Fixed Preemptive Points with CRPD [103, 4, 17, 16, 83, 32]

optimal cache-aware scheduling [85, 86] V-C

Table II. OVERVIEW OF DIFFERENT METHODS TAKING THE CACHE INTO ACCOUNT

C. Scheduling

In this paper, we consider only uniprocessors and mainly
hard real-time periodic tasks. The set of tasks assigned to a
processor is noted τ . A task τi(Ci, Di, Ti) belonging to τ is
characterized by the following timing constraints:
• its worst-case execution time (WCET) Ci, i.e the max-

imal time needed by the processor to execute the task.
Traditionally, this WCET is considered to account for
every potential delay the task may experience. However,
when the WCET does not account for CRPDs, as in
Subsection V-A, it will be denoted Ĉi.

• its period Ti, i.e. the delay between the releases of two
consecutive jobs of the task,

• its relative deadline Di, which is the time, following the
task arrival time (release), at which the task should be
completed. A deadline is said to be implicit if it is equal
to the task period, constrained when it is smaller than
the task period, or arbitrary when it can exceed the task
period.

As explained in [27], a scheduling algorithm is used to
decide, at each instant, which task has to be executed in
order to respect timing constraints. Moreover, we focus mostly
on online scheduling and in particular on fixed-task priority
scheduling (FTP), i.e. all jobs of a task have the same priority
which does not change throughout the application life.

For a given taskset, a schedulability analysis can be con-
ducted to determine if a given scheduling algorithm does not
violate any timing constraint for this system. For FTP schedul-
ing and tasks with constrained deadlines, we will mostly use
the response time analysis (RTA) introduced in [54]:

∀i, Ri ≤ Di (1)

Ri = Ci +
∑

∀j∈hp(i)

⌈
Ri
Tj

⌉
· Cj (2)

with Ri being the worst-case response time of Task τi and
hp(i) the subset of tasks which priorities are higher than the
one of τi. The exact worst-case response time corresponds to
the smallest fixed-point of Equation 2.

In classic scheduling results, preemptions were usually
assumed to be performed at a 0 cost. However, this assump-
tion does not hold anymore as soon as cache memories are
considered as the additional delay incurred by preemptions
can be as high as 40% of the task WCET [82]. So, the use
of caches results in two main problems. First, predictability
has to be ensured. As a result the CRPD has to be bounded.
As stated in [25], there are several ways for assessing the
cache interference penalty associated to every preemption. The
penalty paid every time a preemption occurs can correspond
to the time needed to refill either the entire cache, the lines ac-
cessed by the preempting task, the lines used by the preempted
task, or finally the intersection of lines between the preempting
and preempted tasks. But CRPDs can also threaten the system
schedulability. To overcome this issue, CRPD bounds can be
tightened (see Subsections III-C and V-A) or the CRPD itself
can be reduced or even eliminated (see Section IV).

Note that, as shown in [86], classic scheduling policies such
as RM, DM and EDF are no more sustainable as soon as CRPDs
are considered. That means, for example, that a taskset might
become unschedulable with RM, DM or EDF when decreasing a
job execution time or even the delay incurred by a preemption.

D. Evaluation techniques

To evaluate the effectiveness of a technique and to com-
pare it with previous ones, different approaches have been
adopted in the literature. The evaluation can take place on
a real hardware or, more frequently, analytically by using real
benchmarks or randomly generated tasks.

6

a) Hardware: Different architectures, commonly used in
embedded systems, are targeted: the ARM7 and 91 series such
as in [53, 6, 5] or the MIPS R3000 as in [10]. In [77], Mezzetti
and Vardanega prefer the LEON22 with the ORK+3 real-time
kernel, as it used in several projects from the European Space
Agency (ESA)4.

Typical cache characteristics, as found in [6, 89], are 512B
to 32kB cache, either direct-mapped or way-associative, 16B
line, a Block Reload Time (BRT) of 8 µs [6]. Consider for
example a 4kB direct-mapped instruction cache with 16B line
and assume the instruction size to be constant and equal to 4B.
Then we have 256 cache sets, each of which can contain up to
4 instructions [52]. Note that, for real hardware, the number
of sets is always a power of 2 [96].

b) Benchmark: Different benchmark tasks can be found
in the literature. They are mainly intended for the WCET
computation. The most common ones are probably the so-
called Mlardalen Benchmarks5 presented in [47] and used for
example in [77, 6, 45, 53]. They consist in various programs
such as binary search or data compression ones. They aim to
represent typical code structures with nested loops or switch
cases. Their sizes differ from a few bytes to several kB.
PapaBench6, used in [6, 9] is another benchmark which has
the advantage to be based on a real real-time application [81].
Note that SCADE tasks, see [6], or applications coded in Ada,
for example part of the Attitude and Orbit Control System of
a real satellite studied in [44] as in [77], can also be used.

To compute WCETs using these benchmark tasks, an analysis
tool is needed. Several are used throughout the literature, either
free or commercial: aiT7 in [77, 6, 53], Bound-T8 in [77],
Heptane9 in [10, 89], Otawa10...

c) Taskset Generation: Most authors also use randomly
created tasksets. The different task parameters can be generated
the following way (see [6, 52]):
• task processor utilizations are generated using the UU-

nifast algorithm [75],
• periods are generated according to a log-uniform distri-

bution (between for example 5ms and 500ms as in [52]),
• task cache usages are generated using the UUnifast

algorithm,
• the number of reused blocks (see Section III-C) is

generated according to a uniform distribution ranging
from 0 to a fraction of the total number of memory
blocks for the task.

When dealing with memory layouts (see Section IV-C), the
position of these reused blocks also matters. So, in [69],

1http://www.arm.com/products/processors/classic
2http://www.gaisler.com/index.php/products/processors
3http://www.dit.upm.es/∼str/ork/
4http://www.esa.int/Our Activities/Space Engineering Technology/

Onboard Computer and Data Handling/Microprocessors
5http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
6http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id

rubrique=97
7http://www.absint.com/ait/
8http://www.bound-t.com/
9https://team.inria.fr/alf/software/heptane-static-wcet-estimation-tool/
10http://www.otawa.fr/

the UUnifast algorithm is also used to generate a random
distribution of these blocks throughout the tasks.

d) Monitored metrics: When dealing with cache and
scheduling, different criteria can be studied. As stated in [6], it
is impossible to study all possible combination between those
parameters. The most commonly used variables are the BRT
which is directly related to the preemption cost, the cache size,
and, for the taskset, the total processor utilization, the number
of tasks or their cache utilization (see [6, 52, 69]).

Usually, when dealing with WCETs and cache analysis, the
hit/miss ratio [45], the WCET [3] or a bound on the CRPD [3]
is measured or computed for each task to evaluate possi-
ble improvements brought by the considered method. When
working with scheduling, either by improving analyses or
devising new policies, the total processor utilization [21, 35], a
schedulability ratio [16] or the weighted schedulability [52, 6]
of the taskset is prefered. The weighted schedulability measure,
introduced in [12], allows to reduce results to 2 dimensions
without imposing a constant processor utilization:

W (p) =

∑
τ∈T u(τ) · S(τ, p)∑

τ∈T u(τ)

p being the studied parameter, T a set of tasksets τ generated
for equally spaced processor utilizations u(τ) and S(τ, p) the
schedulable result (either 0 or 1) for Taskset τ under Parameter
p.

E. Technique roadmap
Table II summarizes known techniques for exploiting cache

memories in real-time predictable systems. These techniques
will be detailed in the remaining of this paper.

In the table, techniques are classified depending on their
focus. At one hand, techniques such as cache partitioning
or locking aim at improving timing aspects by decreasing
extrinsic and/or intrinsic cache interferences. At the other
hand, cache-aware scheduling focus directly on improving the
system schedulability by explicitly taking scheduling decisions
depending on cache-related parameters.

III. TIMING ANALYSIS

As real-time scheduling focus on assuring timing require-
ments, the time needed for a task to complete must be known.
But as depicted in Figure 2, this execution time is very
dependant on the possible inputs for the task and on the
hardware behaviour (pipeline and cache states for example).
To ensure predictability, the worst-case execution time (WCET)
of each task has to be considered.

A. General WCET computation issue
One way to get the WCET of a task is to use measurement-

based methods, see for example [84]. But all possible execution
paths have to be measured in order to get the longest one,
which becomes difficult as soon as hardware features such
as pipelines or caches are introduced. If not so, the measured
execution time value might be an underestimation of the WCET
which is unacceptable for hard real-time systems. As stated

http://www.arm.com/products/processors/classic
http://www.gaisler.com/index.php/products/processors
http://www.dit.upm.es/~str/ork/
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_Data_Handling/Microprocessors
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Onboard_Computer_and_Data_Handling/Microprocessors
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.absint.com/ait/
http://www.bound-t.com/
https://team.inria.fr/alf/software/heptane-static-wcet-estimation-tool/
http://www.otawa.fr/

7

time

occurencies

BCET WCET

measured exec. times

possible exec. times

Figure 2. Possible execution times for a task

microarchitecture analysis

path analysis

executable

CFG
CG

value analysis

cache/pipeline
analysis

execution
times

ILP generator

ILP solver

WCET

Figure 3. WCET estimation chain

in [90], it is almost always impossible to conduct exhaustive
testing on a system.

So, static analysis is often used instead: the task code
is analysed in combination with a model representing the
hardware behaviour. As depicted in Figure 3, a low-level
analysis determines the worst-execution times for the different
program blocks of the task. Then, using the values computed at
the previous step, a high-level analysis determines the longest
execution path (WCEP: worst-case execution path) for the task.
The WCET corresponds to the task execution time along this
WCEP.

The low-level analysis computes execution time for each
instruction. Because of complex architectures, the analysis has
to deal with instructions overlapping because of pipelines,
branch prediction, or caches. As a consequence, the whole
task code has to be considered during the analysis. For pipeline
analysis, see for example [108]. Work on branch prediction has
been conducted in [122] and [23]. When dealing with caches,
the easiest way would be to consider all accesses as misses.
But this lead to highly pessimistic results, in particular for
tasks with loops which are very commonly found in RTES.
So, a cache analysis has to be conducted to determine which
accesses will result in hits and which in misses. This analysis
is presented in Section III-B.

Several high-level analyses exist to estimate the WCEP and
so compute the WCET. They usually use the task Control Flow
Graph (CFG), in which blocks correspond to instruction se-
quences without conditional jumps and edges to control flows,
and Call Graph (CG), in which blocks correspond to functions
and edges to function invocations. In [122], Colin and Puaut
propose a tree-based analysis whereas in [61], later extended

a

d1

x1

b
d2
x2 c

d4
x3

d

d3 d5
x4

e

d6

x5

f

d7
x6

g

d8

x7

h

d10

x8

i
d9

d11

x9 j

d14

x10

5×

d12

d13

x
P1

x
P2

2

3 2

2

1

2

1
4

1 3

(a) Task CFG

x1 = d1 = d2 + d4
x2 = d2 = d3
...

}
structural
constraints

x5 ≤ 6
...

}
functionnal
constraints

WCET = max
(∑

ci · xi
)

WCET = x1 × 2 + x2 × 3 + x4 × 2

+ 5× (x5 × 1 + x8 × 4 + x9 × 1)

+ x5 × 1 + x10 × 3

WCET = 41

(b) IPET

Figure 4. Example of WCET computation using IPET

for example in [42] and [99], an integer linear programming
technique, called Implicit Path Enumeration Technique (IPET),
is introduced. It uses the following objective function:

WCET = max

(∑
i

ci · xi

)
where ci stands for the execution time of basic block i and
xi is the number of times the block is executed. Several
constraints are added to represent structural aspects (incoming
and outcoming edges in the task CFG) and functional ones
(loop iteration bounds, mutual exclusive paths). See Figure 4
for an example of a simplified WCET computation using IPET.
IPET is often implemented in WCET analysis tools, such as
aiT11.

For more details on WCET computation methods and on
existing tools, refer to the survey by Wilhelm et al. [120].

B. WCET cache analysis
To compute a tighter WCET, a cache analysis is conducted

to categorize each reference, as proposed in [49], in particular
Always Hit (AH) references, i.e. accessed memory blocks that
are already into the cache and for which a later access will
incur no additional cost. To do so, different cache analyses
have been developed, mainly for instruction caches which are
easier to study. In [109], Mueller proposes to use static cache
simulation, whereas in [39], Ferdinand and Wilhelm prefer to
use abstract interpretation.

Data caches have been studied for example in [39] and [92].
But the analysis is more complex as potential write operations
to the cache (and then to the main memory) might occur,
see [39]. Moreover, data addresses cannot always be deter-
mined statically, see [118].

Hereafter we focus on the cache analyses presented in [39].
Ferdinand and Wilhelm use the concept of Abstract Cache
State to represent the potential cache content at a given
program point. They introduce three fixpoint analyses: the
must, may and persistence analyses to categorize the different

11http://www.absint.com/ait/

http://www.absint.com/ait/

8

instructions of a program. For each program point (just before
reaching a CFG node), the abstract cache state is computed by
merging all incoming cache states using a join function. Then
the cache state is updated (which corresponds to the memory
accesses made by the task at that particular node) to get the
outcoming cache state for the node.

The must analysis is use to determine the AH references: at
each node of the CFG, the cache must content, i.e. memory
blocks that are sure to be in the cache at that program point,
is computed. So the join function only keep memory blocks
which belong to both input cache states. Consider the CFG
depicted in Figure 4(a) and a 4-line direct-mapped cache. At
Program Point P1, the abstract cache state is: [{a}, {}, {}, {}],
which means that only Memory Block a is sure to be in the
cache at that point. Indeed, accesses to b or c depend on the
path which has been taken.

The may analysis allows to determine the AM references:
the cache may content corresponds to the blocks that may have
been accessed before the considered program point and may
not have been thrashed from the cache. At Program Point P1

we have: [{a}, {b}, {c}, {}]. The AM references are computed
by taking the complement of the may content. References that
are in the may content but not in the must one are said to
be Non-Classified. Usually, to upper-bound the WCET, these
references are changed to AM.

Finally, Ferdinand and Wilhelm introduce a persistence
analysis to decrease the cache analysis pessimism. It allows to
classifiy references as First Miss(FM): the first access to the
reference may result in a miss but all further accesses are as-
sured to be hits. Consider Program Point P2 in Figure 4(a). The
corresponding must cache content is [{}, {}, {}, {}] because of
the mutual exclusive paths with compose a loop iteration. So f
would be classify as AM. However, once it has been accessed
(if he is ever accessed) it cannot be removed from the cache,
as neither g, e, d nor h maps to the same cache line. So, thanks
to the persistence analysis, f is classified as FM.

For more details about cache analyses and how they are gen-
eralized to set- and fully-associative caches, see Ferdinand and
Wilhelm [39]. Note also that a refinement of the cache analysis
using abstract interpretation has been proposed in [100]: using
model checking some NC accesses can be identified as AH
decreasing the analysis pessimism.

C. Including Cache-Related Preemption Delays into the WCET

However, one issue remains: how to account for CRPDs? The
WCET computed using the methods described in the previous
two sections corresponds to the worst-case execution time of
a task executing on its own without any external interference.
But of course, as soon as preemptive scheduling is considered,
we have to account for potential damage done to the cache by
preempting tasks.

Once more, the easiest way to compute a WCET taking
preemption costs into account is to assume a cache miss at each
reference. This is a very pessimistic but general approach, as it
is only dependant on the task being analysed (so the computed
WCET can be used for several task systems scheduled with
different algorithms).

A less-pessimistic way is to increase the WCET to account
for the CRPDs. In [116], Ward et al. distinguish between
preemption-centric and task-centric methods.

Preemption-centric methods add an upper-bound on the
CRPD, δi, to the preempting task, as in [13]:

Ĉi = Ci + δi

δi can be computed as the cost of reloading the entire cache,
or less pessimistic, as the damage the preempting task can
have on the cache content. This interference can be modelled
using the notion of Evicting Cache Block (ECB), introduced
in [110]. For direct-mapped caches, there are as much ECBs
as cache lines that may be accessed by the task during its
execution. The upper-bound comes straight-forward:

δj = BRT · |ECBj | (3)

For task-centric methods as in [102] and [28], the WCET is
increased by an upper-bound on the CRPD for one preemption,
γi, multiplied by an upper-bound on the number of possible
preemptions, n, the task may suffer:

Ĉi = Ci + ni · γi
To compute the upper-bound on the number of preemp-
tions several methods have been proposed, depending on the
scheduling policy. As stated in [116], for FTP scheduling, a
simple bound is given by: ni =

∑i−1
j=1

⌈
Ti

Tj

⌉
. However, such

a bound overestimates the number of potential preemptions.
So more precise computations have been proposed in [94] and
in [38] where upper-bounds on the number of preemptions for
both FTP and EDF scheduling policies are proposed.

As presented in [58], Useful Cache Blocks (UCBs), which
correspond to the reuse of the available cache contents by
the preempted task, can be used to compute γi. Consider the
example depicted in Figure 4(a): at Program Point P2, Memory
Blocks e, f , g and h may have been accessed by T . f , g and h
are UCBs as their access will not result in additional reloads, if
no preemption is considered, as they are already in the cache.
But e is no UCB as Block i will evict it from the cache before
it is re-referenced. Then, the upper-bound is simply computed
as:

γi = BRT · |UCBi| (4)

Lee et al. propose in [58] a method to compute the UCBs
of a task using a representation of the cache contents. Such
a representation was enhanced by Negi et al. in [80] but
at a higher computing complexity. So Staschulat and Ernst
introduce in [104] a trade-off between the above two methods.
A different but less frequently used approach is proposed in
[92] for data caches, using access patterns.

To compute a tighter CPRD bound for the task-centric
approach, a combination of ECBs and UCBs can be considered
as proposed in [80] and [101]:

γi,j = BRT · |UCBi ∩ ECBj | (5)

To improve the CRPD bound computation, Altmeyer et al.
also introduce in [3] the notion of Definitely-Cached Useful

9

Block (DC-UCB): it allows tighter results in comparison with
UCBs because it only accounts for cache misses which have
not already been considered during the WCET analysis. As a
consequence, this method is only safe when used in combina-
tion with a WCET bound. Note that, as soon as fully- or set-
associative caches are considered, and as stated in [22], UCBs
and ECBs can be used only with the LRU cache replacement
policy. For CRPD bound computations with other cache policies
such as FIFO, the notion of relative competitiveness, presented
in [97], can be used.

According to [116], task-centric methods are highly pes-
simistic when the number of tasks is high (because many
possible preemptions have to be considered). On the other side,
preemption-centric methods become highly pessimistic when
task WSSs are highly variant. As a consequence, Ward et al.
propose in [116] a mixed-approach. The CRPD is accounted
for both the preempted and preempting tasks:

Ĉi = Ci + n ·max(0, γi −G) +G

G is computed using linear programming in order to minimize
the taskset total processor utilization.

IV. MEMORY MANAGEMENT

The idea is here to reduce and/or eliminate the extrinsic
and/or intrinsic cache interferences by playing on the cache
mapping. Decreasing or even removing these cache side-effects
can be intended in order to: minimize a given task WCET,
decrease the overall processor utilization or maximize the
system schedulability.

Different techniques exist to achieve such goals. The most
common ones are cache partitioning, cache locking and task
layout which will be presented hereafter. However, other
methods can be found in the literature. In [119], Whitham
et al. propose to save the cache state on a stack, whenever
a task is preempted, and restore it when the task resumes its
execution, whereas in [2], Allard et al. prefer to divide the
cache into two layers: one is used as an usual cache while the
second one saves its content to the main memory or restore a
previous content from the main memory. A similar approach
is used in [117] along with a non-preemptive fixed-priority
scheduling algorithm. Finally, in [95], Reineke et al. propose
to implement a new cache replacement policy which takes into
account the task to which the cached memory block belongs.
This policy allows to decrease the CRPD by avoiding some
block reloads.

The different methods listed here are synthesized in Table II.

A. Cache partitioning
Cache partitioning aims to eliminate potential inter-task

cache conflicts as they are source of unpredictability. The
cache is divided into several sets which might be of different
size. Tasks are then assigned to those partitions and so cannot
interfere with one another. Note that, very often, a common
partition is added for non-critical tasks or shared data, see for
example [56]. The main question is, of course, to find the
number of partitions and their respective sizes.

cachemain memory

τ1:

τ2:

τ3:

Figure 5. Example of software cache partitioning for three tasks τ1, τ2 and
τ3.

Cache partitioning can either be implemented at the hard-
ware level, as proposed in [56] by modifying the memory
management unit behaviour, or be software-based, as first
introduced in [121] and improved in [79]. Recently, software-
based partitioning has been mostly considered because, as
stated in [79], the hardware-based one has several drawbacks:
the partition sizes are fixed beforehand and custom-made
hardware architectures have to be used while software-based
partitioning can be applied directly to all off-the-shelf architec-
tures. To implement software-based partitioning, OS-controlled
techniques to manage the cache can be used as presented
in [62], or code modifications can be introduced at the compiler
(linker) level as proposed in [79]. This latter technique is based
on the fact that the location of task memory reference in the
cache is determined by its position in the main memory. So,
by changing properly task reference locations in the main
memory, as depicted in Figure 5, then those references will
map only to a restrictive number of cache lines creating a
partition. But, as the task code may be split, unconditional
jumps might be added resulting in a potential increase in
the task WCET. Note that it is also the case for hardware-
partitioning, as it needs additional circuits to be implemented,
as shown in [57]. As stated in [114], hardware partitioning is
usually way-based, whereas software partitioning is typically
set-based.

By comparing cache partitioning with other methods (in par-
ticular task layout), Altmeyer et al. identify in [6] partitioning
to be more suited for tasks with short WCETs and periods as, in
this case, CRPDs might be very high in comparison with their
execution times. Such tasks can typically be control-oriented
applications.

a) Fully-partitioning: To fully eliminate extrinsic inter-
ference, private partitions are used: all tasks are isolated from
one another. The simplest way to compute a task partition
size is to consider the task size relative to the taskset size
as proposed in [79]. But, because tasks have access to a
smaller amount of cache memory, their WCET may increase
and thus threaten the system schedulability. To overcome this
problem, Plazar et al. propose in [87] to base the partition
size selection on the goal of minimizing the overall system
processor utilization. However, as stated in [6], minimizing the
processor utilization does not necessarily lead to optimality
in terms of schedulability for the system. So, Altmeyer et
al. focus on a partitioning algorithm aiming at maximizing

10

directly the system schedulability instead of minimizing the
total processor utilization [6].

b) Hybrid-partitioning: The techniques presented above
allow to eliminate extrinsic cache interferences but at the
cost of potentially increasing the intrinsic interference which
may have dreadful consequences on the system schedulability.
Indeed, very often, as shown for example in [6], the increased
predictability provided by cache partitioning (as no CRPD
has to be accounted for any more) does not compensate for
the performance degradation in WCETs. So, Busquets et al.
propose in [107] a hybrid partitioning technique: some critical
tasks will have to share a same partition. They propose a
task partition assignment under RM scheduling: highest priority
tasks will be assigned to same-sized private partitions, whereas
the remaining tasks with lower priorities will share one
common partition. They show that hybrid-partitioning allows
to achieve better processor utilization than fully-partitioning
techniques when the cache gets smaller. Note that, for large
caches, both approaches perform quite identically. In [21], Bui
et al. release the partition constant size constraint. Partition
assignment is stated as an optimization problem which goal is
to minimize the total processor utilization. However, they prove
such a problem to be NP-hard as it can be reduced from the
knapsack problem in polynomial time. So, they use a genetic
algorithm to compute a number of partitions with different
sizes and the corresponding task assignment. In [106], Tan and
Mooney propose a hardware-based partitioning solution using
additional registers for fixed-priority tasks, called prioritized
cache. Priorities are assigned to cache partitions such that only
tasks with priorities higher or equal to the one of the partition
have access to it.

B. Cache locking
Achieving predictability when using caches becomes dif-

ficult because of intrinsic and extrinsic cache interferences.
It is often hard to know precisely the cache contents at a
given instant. Full partitioning allows to eliminate the ex-
trinsic interference but at the cost of potentially decreasing
the schedulability. Another solution is to use cache locking:
some cache lines are prevented from being overwritten once
some content has been loaded into them. This is done through
hardware mechanisms that allow to control the cache contents
at the software level. Such mechanisms are implemented in off-
the-shelf architectures such as the ARM9 series12 (see [53]).
Note that most locking techniques deal only with instruction
caches. A focus on data caches is given in [113]. To tell the
hardware which content to lock, either debug registers can be
used as in [10] or lock/unlock instructions have to be added
in the task code as in [91].

Cache locking can be static, i.e. the cache locked content
does not change during the whole system execution, or dy-
namic, i.e. the locked cache content can change at runtime.
Consider the example depicted in Figure 6. Memory references
are denoted by letters. In 6(a), τ1’s and τ2’s worst-case
execution paths are depicted by the sequence of their memory

12http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0092b/
I14301.html

Hit: H = 0.25
BRT = 0.25
⇒ Miss: M = 0.5
τ1 = abcdbcdbcde
τ2 = efghfghi

no locking static locking dynamic locking
C1 9M+2H=5 11M=5.5 5M+6H=4
C2 7M+1H=3.75 4M+4H=3 4M+4H=3

(a) Taskset and hardware characteristics

cache
{a,c,e,...}
{b,d,f,...}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

τ2

(b) No locking

τ2 locking
g
h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

τ2

(c) Static locking

τ1 locking
c
d

τ2 locking
g
h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

τ1

τ2

(d) Dynamic locking

Figure 6. Example of different locking techniques. The up arrows represent
the job releases and the down arrows the task deadlines.

accesses. A cache hit is supposed to result in an execution time
of 0.25 whereas a miss leads to an additional delay of 0.25.
Tasks are scheduling under Rate Monotonic. When no locking
technique is used, τ1’s second job preempting τ2 incurs an
additional delay causing τ2 to miss its deadline. In 6(c), static
locking is used: Blocks g and h belonging to τ2 are loaded in
the cache at the system start-up and locked. As a consequence,
τ1 cannot use the cache and its WCET is increased, see the
table depicted in 6(a). But no CRPD is incurred anymore and
as a result the system becomes schedulable. Using dynamic
locking as shown in 6(d), each time τ1 (respectively τ2) is
released or resumes its execution, Blocks c and d (resp. g and
h) are loaded into the cache. It allows smaller WCETs, see the
table in 6(a), and, once more, the system is schedulable. We
distinguish hereafter between full locking techniques, where
the whole cache is locked at each instant, and partial ones,
where some lines are left unlocked.

a) Full Locking: Campoy et al. in [31] are the first to
propose the use of cache locking to improve predictability.
They use global static locking, i.e. at every moment each task
owns a portion of the cache. Blocks to be locked are chosen
according to a genetic algorithm which tries to minimize
the average task response times. In [41], Falk et al. prefer
to focus on minimizing the WCET. The proposed algorithms
are only heuristics as the static locking problem aiming to
minimize the WCET is NP-hard, as proved by Liu et al.
in [64]. In [30], Campoy et al. find that static locking is
more suitable to achieve higher predictability, but, in most
cases, dynamic locking shows better performances. So, in [10],
Arnaud and Puaut prefer to use local dynamic locking, i.e. at
each instant, a task owns the whole cache. Tasks are split into
sets of basic blocks using a greedy algorithm which tries to
minimize each task WCET. For each set the locked cache state
is known statically. Finally, in [88] and latter in [89], Puaut

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0092b/I14301.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0092b/I14301.html

11

and Pais introduce an algorithm to select the reload points
using a cost function based on the goal of reducing the WCET.
Then, memory contents to be locked at each of the selected
reload points are chosen. In [53], Liu et al. use a tree-based
approach to represent tasks. They propose static, semi-dynamic
and dynamic locking algorithms aiming to minimize the total
processor utilisation. They show further processor utilization
reduction compared to previous algorithms focusing only on
the WCET, such as in [41].

b) Partial Locking: But as for cache partitioning, global
locking techniques, either static or dynamic, result in tasks
having accessed to a limited cache space which may in turn
increase their WCETs and thus threaten the system schedulabil-
ity. So, in [35], Ding et al. propose to use partial locking: one
portion of the cache is statically locked for each task while a
common portion of the cache is left unlocked. Locked contents
are selected according to a cost-benefit analysis: the aim is to
minimize the worst-case response times. In [35], Ding et al.
focus on static locking, but they extend their work to dynamic
locking in [36] showing better results.

c) Locking with partitioning: Contrary to the authors
cited before, Vera et al. study locking for data caches in [113].
They propose a combined approach: cache partitioning is used
to eliminate inter-task (extrinsic) interference whereas cache
locking is aimed at insuring intra-task (intrinsic) interference
predictability.

C. Memory layout
As stated for software-based cache partitioning, the position

of a memory reference in the main memory influences its
location in the cache. Memory layout techniques focus on
reducing either the intrinsic or the extrinsic cache interference.
Code positioning (respectively task placement) aims to reduce
intra-task (resp. inter-task) conflicts by modifying, during the
compilation process (resp. when loading the tasks into the main
memory), the position of code sections of a task (resp. of the
entire task) but without necessary creating cache partitions.
Figure 7 depicts an example of task placement taken from [45].
Tasks τ1 and τ3 have short periods whereas τ2 has a larger one.
So τ1 and τ3 may conflict with each other very frequently
causing high CRPDs. As a result, the taskset is not schedulable
as depicted in 7(a). Changing task positions in the main
memory as in 7(b) allows to have τ1 and τ3 mapping to
different cache lines. τ1 preempting τ2 does not incur CRPDs
anymore. So the total inter-task interference is significantly
reduced and the taskset becomes schedulable.

In [68], Luniss et al. show that, for FTP scheduling, task
positioning can allow similar processor utilization as EDF.
Moreover, Altmeyer et al. find in [6] that, in most cases, the
use of a task layout, resulting from the algorithm proposed
in [69], leads to better results than cache partitioning in terms
of the number of schedulable tasksets. However, as soon as
task positioning is considered, changes in the taskset or in the
scheduling policy implies to recompute layouts, so possibly
modifying the task WCETs.

a) Code positioning: In [111], Tomiyama and Yasuura
focus on code placement techniques to decrease the task

cache
main memory

τ1

τ2

τ3

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ3

τ2

(a) Non-optimized task layout

cache
main memory

τ1

τ3

τ2

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ3

τ2

(b) Optimized task layout

Figure 7. Example of different layouts for Tasks τ1(1, 3, 3), τ2(1.5, 12, 12)
and τ3(3, 6, 6) scheduled using Rate Monotonic.

miss rate and so achieve intra-task conflict reduction. In [76],
Kowarschik and Weiss propose several code modification
techniques such as loop interchange, as well as data layout
optimization in order to increase locality and so reduce cache
misses. In [65], Lokuciejewski et al. propose three positioning
algorithms to reduce intra-task conflicts. They focus on high
call frequency procedures which they try to allocate contigu-
ously in memory. In particular, they use a greedy algorithm
and a heuristic one to achieve such a goal. As a consequence,
WCETs are reduced. In [40], Funk and Kotthaus propose a
cache-aware code positioning optimization driven by WCET
information based on conflict graphs to determine potential
intrinsic conflicts. Tasks are split in fragments and a greedy-
approach-based heuristic is used to position the different
fragments in memory. At each step of the algorithm, a new
WCET is computed and compared to the previous one, in order
to know if any improvement has been achieved. Because tasks
are split, code modifications have to be introduced such as
unconditional jumps. In [77], Mezzetti and Vardanega focus on
the problem of incremental development for industrial needs.

b) Task placement: In [45], Gebhard and Altmeyer prefer
to study task placement to decrease inter-task conflicts. Their
idea is to maximize the number of persistent cache sets
to allow more precise WCET estimations for preemptively
scheduled tasks. To find a optimal task layout, they consider
an optimization problem using an integer linear program (ILP)
formulation. The objective function can be basically seen as
the sum over the cache conflicts for each task. But, Gebhard
and Altmeyer show that such a problem is unfortunately NP-
complete. So, they propose a simulated annealing algorithm
as a heuristic approach. Lunniss et al. extend this algorithm
in [69] by using UCBs and ECBs to determine whether an
evicted block will need to be reloaded or not. Later, in [8],
Altmeyer et Gebhard derive a metric to compare different
memory layouts. Then, they approximate an optimal layout
with respect to this metric and memory accesses are classified
as persistent or endangered. Eventually, they compute a safe
bound on the WCET, thanks to that classification.

12

V. ENHANCED TASK MODELS

An other way to deal with cache issues is to work at the
scheduling level. Thus, two main orientations can be followed:

1) the first one is to ensure predictability by incorporating
the CRPDs in the schedulability analysis: in contrast to
Section III, the CRPD and the WCET are considered here
apart from each other,

2) the second one is to increase the system schedulabil-
ity by reducing the number of preemptions through
scheduling modifications or by explicitly considering
cache-related preemption delays when taking schedul-
ing decisions.

The different methods are synthesized in Table II.

A. Cache-aware scheduling analysis

In Section III, preemption delays were accounted for into
the WCET. But such techniques often result in very pessimistic
WCETs, because the number of preemptions is hard to de-
termine accurately. To overcome this shortcoming, the CRPD
can be considered apart from the WCET. The idea is first to
compute an upper-bound on the CRPD due to one preemption
from a higher priority task, by considering the preempted
and/or preempting tasks. Then these costs are incorporated into
the schedulability analysis, by extending the classic response
time analysis (RTA) for FTP scheduling, as proposed by
Busquets-Mataix et al. in [25]:

R̂i = Ĉi +
∑

∀j∈hp(i)

⌈
R̂i
Tj

⌉
· (Ĉj + γi,j) (6)

γi,j represents a bound on the CRPD experienced by Task τi
each time it is preempted by a higher priority Task τj . Note
that Ĉi is the WCET of the task considered on its own, i.e.
without taking into account possible delays due to other tasks,
contrary to the traditional Ci as introduced in II-C.

a) Preempting task: Busquets-Mataix et al. [24], and
later Tomiyama and Dutt in [110], focus on the preempting
task to bound the CRPD. As in Section III, Evicting Cache
Blocks, i.e. cache lines that may be accessed by the task
during its execution, are used to represent the potential damage
the preempting task can have on the cache. The ECB-only
approach uses the same ECB-bound (3) as in Section III:

γecbj = BRT · |ECBj | (7)

Consider the example depicted in Figure 8. τ1 is assumed to
have a higher priority than τ2 which in turn has a higher
priority than τ3. If CRPDs were not taken into account,
then the taskset would be considered schedulable, according
to the Rate Monotonic Analysis (RMA) presented in [63]:
U =

∑3
1
Ci

Ti
≤ 3 × (21/3 − 1). However, using Formula 3,

τ1 preempting τ3 (respectively τ2 preempting τ3) incurs an
additional delay γ1 = 1× 2 = 2 (resp. γ2 = 1× 3 = 3). As a
result, using Formula 6, the worst-case response time of τ1 is
R̂3 = Ĉ3 + (Ĉ1 + γ1) + (Ĉ2 + γ2) = 12 and the task misses
its deadline.

1) Using the ECB-only approach:

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ2

τ3

2) Using the UCB-only approach:

0 1 2 3 4 5 6 7 8 9 10 11 12

τ1

τ2

τ3

BRT = 1

ECB1 = {1, 2}
⇒ |ECB1| = 2

ECB2 = {3, 4, 5}
⇒ |ECB2| = 3

UCB2 = {3, 4}
⇒ |UCB2| = 2

UCB3 = {6}
⇒ |UCB3| = 1

Figure 8. Schedules for tasks τ1(2, 9, 9), τ2(2, 9, 9) and τ3(3, 9, 9) using
the ECB- (upper figure) and UCB-only (lower figure) approaches to bound the
CRPD (numbers within {}-brackets for ECBs and UCBs correspond to cache
line indexes).

Busquets-Mataix et al. show in [24] that, when using the
CRPD bound given by Equation 3, the RTA computed using
Equation 6 clearly outperforms the cached version of the
RMA schedulability test presented in [13] which uses a WCET
including the CRPDs.

b) Preempted task: In [58], Lee et al. prefer to focus on
the preempted task to bound the CRPD, using Useful Cache
Blocks (UCBs). We recall that UCBs correspond to the reuse
of the available cache contents by the preempted task. But the
simple bound given by Equation 4, presented in Section III,
cannot be used here. This is because of the impact of potential
nested preemptions. Consider again the three tasks depicted
in Figure 8. Applying Formula 4, we get: γ2 = 1 × 2 = 2
and γ3 = 1 × 1 = 1. Using the RTA given by Equation 6,
we see that τ3 can suffer as most one preemption from each
higher priority task. Adding twice the CRPD γ3 will result in
R̂3 = Ĉ3+(Ĉ1+γ3)+(Ĉ2+γ3) = 9. However, τ1 preempting
τ2 results in a preemption cost γ2 of 2 and thus, as shown
in Figure 8, the worst-case response time of τ3 becomes 10
causing the task to miss its deadline. So intermediate tasks have
to be considered to account for potential nested preemptions.
Finally, the CRPD incurred by a higher priority Task τj on Task
τi can be computed using the UCB-only approach:

γucbi,j = BRT · max
∀k∈hep(i)∩lp(j)

{|UCBk|} (8)

with hep(i) the set of tasks of priority higher or equal to τi
and lp(j) the set of tasks of lower priority than τj .

Applying this formula on the example depicted in Figure 8,
we get: γucb3,1 = 1×max{2, 1} = 2 and γucb3,2 = 1×max{1} =
1, and so R̂3 = 10.

c) Both tasks: But, considering either the preempting task
or the preempted task on their own is very pessimistic: it
is possible that those tasks do not conflict into the cache.
Consider again the example depicted in Figure 8 and a 8-lines
direct-mapped cache. ECB1∩UCB2 = ∅, ECB1∩UCB3 =
∅ and ECB2 ∩ UCB3 = ∅: so, τ1 preempting τ2 or τ3
and τ2 preempting τ3 will not cause additional delay as
evicted cache lines are not used later on by the preempted
tasks. So UCBs and ECBs can be combined to decrease this
source of pessimism and so tighten the CRPD bound. Different

13

approaches have been proposed in the literature such as UCB-
Union in [105] and ECB-Union in [5]. They are improved
in [52] to estimate more accurately the number of preemptions
in the schedulability analysis. A comparison of these different
approaches can be found in [52].

Finally, all these results are extended to EDF in [67]. In [68],
Lunniss et al. compare FTP scheduling and EDF as soon as
CRPD is considered. They show that EDF still offers better
performances than FTP scheduling, but the gap is narrower
than for scheduling without CRPDs. Note that CRPD accounting
techniques based on UCBs and ECBs have also been proposed
for more complex scheduling paradigms, such as hierarchical
scheduling [71, 70].

B. Limited preemption scheduling
The methods presented in the previous section only consider

the CRPD to assure predictability. No change was made to
the scheduling policy itself. We now focus on techniques
to increase the system schedulability by controlling the pre-
emptions. Indeed, as stated in [115] and illustrated in Fig-
ure 9, for FTP scheduling, preemptive and non-preemptive
schedulings (respectively denoted FPPS and FPNS) are in-
comparable. Moreover, using limited-preemption scheduling
can make a system, unschedulable under both preemptive
and non-preemptive schedulings, schedulable, as depicted in
Figure 10 using preemption thresholds on the same example
as in Figure 9.

Historically, these methods only aim to increase schedu-
lability by controlling preemptions without considering any
preemption cost. However, recent works, such as [20], have
focused on combination between classic limited-preemption
techniques and CRPD-aware schedulability analyses.

We focus on two limited-preemption scheduling categories:
fixed-task preemption thresholds scheduling (FPTS) and fixed-
task deferred preemption scheduling (FPDS). For FPDS, either
the floating-Non Preemptive Region model (f-NPR) or the
fixed-NPR one, also referred to as the Fixed Preemptive Points
model (FPP), can be used. We mainly focus on the latter as
the f-NPR model is poorly suited to take CRPD into account.
A generalization of both FPTS and FPDS has been introduced
in [19] by Bril et al.. Note that there also exist other techniques
such as the one introduced by Dobrin and Fohler in [37]:
instead of modifying classical preemptive-scheduling, tasks
attributes are changed to reduce the number of preemptions.

a) Preemption Thresholds: The notion of preemption
thresholds was first introduced in the ThreadX RTOS13 and
later theorized by [115]. Alongside their priority, each task is
given a preemption threshold θi. A task can only be preempted
by a higher priority task which priority is also higher than
the lower-priority task threshold. An example of this policy,
applied to the example presented in Figure 9, is depicted in
Figure 10. A Time 10, a new job of τ2 is released. τ2 has a
higher priority than the running task τ3, but as its threshold is
not higher than τ3’s priority, no preemption can occur at this
point, and, as a consequence, τ3 can finish its execution and
so meets its deadline.

13http://rtos.com/products/threadx

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ1

τ2

τ3

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ1

τ2

τ3

(b)

Figure 9. Non dominance of FPPS and FPNS taken from [26] for taskset
example: τ1(1, 4, 6), τ2(3, 9, 10) and τ3(6, 12, 18) (τi(Ci, Di, Ti)).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ1

τ2

τ3

Figure 10. Example of FPTS taken from [26] on the same taskset as in
Figure 9; with preemption thresholds: θ1 = θ2 = 3 and θ3 = 2.

In [20], Bril et al. introduce a schedulability analysis for
preemption threshold scheduling which incorporates CRPD.
They combine works on preemption thresholds without CRPD
made by [55] with the ECB- and UCB-based approaches
proposed amongst others in [52].

b) floating-Non Preemptive Region: Here the idea is that
each task has a maximum interval of time, called a Non-
Preemptive Region (NPR) of size qi, during which it cannot be
preempted by any other task. Under the f-NPR model, when
a higher priority task is ready, the task already executing will
only be preempted after qi units of time. f-NPR scheduling
has been studied for example in [11], [15] and [43]. Some
works have also been conducted to incorporate the CRPD in
the f-NPR model. In [93], Ramaprasad and Mueller work on
bounding the worst-case response time as soon as data caches
are considered. In [73], later improved in [72], Marinho et al.
compute an upper-bound on the CRPD to be included into the
WCET based on a preemption delay function. This function
represents the preemption cost tied with program-execution
progression. But as the NPR is floating, it is nearly impossible
to take CRPD into account to decide when to preempt or not.

c) Fixed Preemptive Points: Under the FPP model, each
task job is divided into mi non-preemptive subjobs of size
qi,k ≤ qi. A task can only be preempted between two
consecutive subjobs: for example, as depicted in Figure 11, τ1’s
preemption on τ3 is delayed until time 8 which corresponds
to the end of τ3’s first subjob. The FPP model makes it
possible to protect some code sections (small loops, or sections
with accesses to shared resources) by including them in
non-preemptable subjobs. However, implementing preemption
points is not easy and requires task code modifications. This
problem is discussed in [51]. In addition NPR sizes have

http://rtos.com/products/threadx

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

τ1

τ2

τ3

Figure 11. Example of FPP taken from [26] on the same taskset as in
Figure 9, with τ2 split in two subjobs of size 2 and 1 and τ3 split in two
subjobs of size 4 and 2.

to be recomputed as soon as the taskset changes, and, as a
consequence, preemption point placement in the code may
have to be changed. Scheduling with Fixed Preemptive Points
has been studied in particular in [18], [123], [124] and [43].

In [4], Altmeyer et al. take CRPD into account to compute
the maximum blocking time a task can suffer because of a non-
preemptive subjob of a lower priority task. Indeed, because of
the preemption cost paid when a task resumes its execution, the
next preemption point may be delayed and, as a consequence,
the blocking time is increased.

C. Cache-aware scheduling

The methods presented in the previous subsections aim to
increase the system schedulability by controlling the preemp-
tions. CRPDs are only accounted for (or not) during the schedu-
lability analysis to ensure predictability. However, decreasing
the number of preemptions do not necessarily decrease the total
CRPD as shown in [16]. So, to overcome this issue, the CRPDs
have to be considered when taking scheduling decisions.

The cache-aware scheduling problem can be tackled by
modifying the pre-processing step of different classic schedul-
ing decisions. For example, choosing the task priorities or fixed
preemption points based on cache consideration, will have an
effect of the decision of scheduling a job at a given instant. But
as the influence of cache issues on the scheduling decisions
is only indirect, these solutions might not be optimal. So the
problem of devising scheduling policies that are based directly
on cache parameters has to be investigated.

a) CRPD-aware pre-processing: In [112], Tran et al.
propose to extend Audsley’s algorithm for assigning task
priorities to take CRPDs into account. The basic idea is to
test at each priority assignment step the system schedulability
using the cache-aware RTA. In [20], Bril et al. use their
schedulability analysis for the preemption threshold policy to
propose an optimal algorithm to assign preemption thresholds
which aims to minimize the CRPD. In [114], Wang et al.
combine preemption threshold scheduling and partitioning. A
same threshold is given to tasks assigned to a same cache
partition such that they cannot preempt each other. As a
consequence, no CRPD is incurred. The partition and thresh-
old assignment problem is formulated as an Integer Linear
Program. A heuristic algorithm is also proposed. The CRPD
can also be considered when selecting the preemption points.
In [103], Simonson and Patel propose to split tasks at points
having the minimum number of live cache lines while ensuring
that the longest non-preemptive interval for the task is not
exceeded. The notion of live cache lines correspond to what

Lee et al. call, in [59], UCBs. This method allows to reduce
the total preemption overhead. However, as stated in [32], it
does not compute a globally optimal solution. Finally, in [17],
later improved in [16], Bertogna et al. introduce an optimal
preemption point placement algorithm to minimize the total
preemption overhead rather than necessary minimizing the
number of preemption points. The CRPD is then added into
the task WCET (as the number of preemption points and their
respective costs are known). In [83], Peng et al. extend this
work to task codes with conditional branches. One drawback of
these works is, according to [60], the possible overestimation
of the number of preemptions: when computing the task WCET
accounting for CRPD, all preemption points are assumed to
result in a preemption. In [32], Cavicchio et al. introduce
a more accurate CRPD calculation by considering the cache
blocks that are reloaded during two consecutive preemption
points. As a consequence, it allows more tasksets to be
schedulable in comparison with the Bertogna et al.’s method,
as the total preemption overhead is significantly decreased.

b) Optimal cache-aware scheduling: We now consider the
more general problem of cache-aware scheduling, i.e. taking
optimal scheduling decisions according to cache issues. Cache-
aware scheduling can be tackled from two different angles:
• CRPD-aware scheduling: decisions are based on CRPD

information, the scheduler might try to minimize them
in order to increase schedulability.

• Cache-aware scheduling: decisions are based on cache
utilization information, the scheduler might try to max-
imize cache re-utilization by the tasks, for example if
external libraries or functions are shared among tasks.

Unfortunately, as stated in [85], both problems are NP-hard in
the strong sense for uniprocessor systems.

To the best of our knowledge, little research has been
conducted on optimal uniprocessor cache-aware scheduling.
However, some work exists as far as multiprocessors are con-
cerned. But most of them deal with partitioned multiprocessor
soft-real time scheduling: cache-aware decisions influence only
the taskset partitioning process in order to reduce conflicts
between tasks, see for example in [29] and [46].

In [86], an offline solution to the CRPD-aware schedul-
ing problem is proposed for a task model with a constant
CRPD bound for each task, using a Mixed-Integer Linear
Program (MILP) formulation. The computed solution provides
a comparative point to evaluate the loss of schedulability of
classic scheduling policies such as EDF as soon as CRPDs
are considered. The model proposed in [86] is pessimistic
as it considers only a preemption cost per task, meaning for
example that each task has to reload all of its UCBs after
every preemption. But extending this model to better model the
CRPD, by considering both the preempted and the preempting
tasks, would cause the MILP size to explode, as the impact on
the cache of all intermediate tasks which execute during the
preemption has to be considered.

VI. PROSPECTS

The methods presented before often aim at solving a specific
issue related to the use of caches in real-time embedded

REFERENCES 15

systems. Some focus on solving the predictability problem
by either accounting for the CRPD in the WCET or during
the scheduling analysis, or by eliminating those delays using
for example a fully-partitioned cache or static locking. On the
other hand, some authors prefer to focus on the schedulability
problem using for example limited preemption techniques.

Along with many approaches to reduce either the CRPD
or the number of preemptions, a cache-aware schedulability
analysis is proposed to ensure predictability, such as [25]
for cache hybrid-partitioning or [20] for preemption thresh-
old scheduling. An other solution can be to associate cache
partitioning to reduce inter-task conflicts and cache locking to
reduce the intra-task interference, as proposed in [113].

The two problems of predictability and schedulability are
hard to solve at the same time. For example, fully-partitioning
ensure predictability as no CRPD is incurred. However, the
consequent increase in task WCETs may threaten the system
schedulability. To overcome this issue, an interesting solution
is to combine different approaches focusing on different goals.
The work presented in [114] is a good example of what
can be done in this direction. The authors combine parti-
tioning with preemption threshold scheduling. They use the
fact that considering preemption thresholds create groups of
non-preempting tasks. So these tasks can share a common
cache partition without incurring CRPDs. So the advantage of
hybrid-partitioning (which allows a trade-off between reducing
extrinsic cache interference, i.e. CRPDs, without increasing too
much the intrinsic cache interference, and as a result the WCET)
is coupled with the benefit of fully-partitioning (which is to
eliminate all CRPDs).

An other solution is to apply cache-aware schedulability
analyses to determine thresholds [20] or task priorities [112].
Memory layouts can also be used in combination with limited
preemption policies. Cache locking could also be used along
with FPP scheduling as the number of memory blocks needing
to be reloaded (and so which would have to be locked) might
be quite smaller (when using an analysis such as in [32]).

VII. CONCLUSION

This paper has proposed a state of the art of different
strategies to deal with cache issues in uniprocessor real-time
scheduling. The presented methods aim either at tightening
CRPD bounds to improve predictability or modifying existing
scheduling policies to reduce these CRPDs in order to increase
the system schedulability. What can easily be seen is that no
solution clearly outperforms the other ones. Moreover, very
often, no optimal solution exists such as proved for cache-
aware scheduling or cache locking.

Combination between the different methods can allow sig-
nificant improvements. For example, the use of cache parti-
tioning/locking or memory layout enables to decrease extrinsic
interference which in turn decrease the cost of a preemption.
Then using a limited preemptive policy such as FPP reduce the
number of preemptions and so the total CRPD. Finally, using a
cache-aware schedulability analysis ensures predictability and
avoid wasting hardware resources.

Future works could be conducted on improving these com-
binations. Moreover, it seems interesting to us to study further

the problem of optimal cache-aware scheduling in order to find
if effective heuristics can be found.

This problem of cache interference is even bigger when deal-
ing with multiprocessors. Indeed, multiprocessors use cache
levels with private and shared caches, making the cache
analysis problem much more complex, see [125]. Moreover,
when considering global scheduling, tasks or jobs can migrate
from one core to another one, causing additional delays called
cache-related migration delays [48].

REFERENCES

[1] Federal Aviation Administration. Commercial Off-The-
Shelf Real-Time Operating System and Architectural
Considerations. 2004. URL: https : / / www. faa . gov /
aircraft/air cert/design approvals/air software/media/
03-77 COTS RTOS.pdf.

[2] Y. Allard, G. Nelissen, J. Goossens, and D. Milojevic.
“A context aware cache controller to bridge the gap
between theory and practice in real-time systems.”
In: Embedded and Real-Time Computing Systems and
Applications (RTCSA), 2014 IEEE 20th International
Conference on. 2014, pp. 1–10.

[3] S. Altmeyer and C. Burguiere. “A New Notion of
Useful Cache Block to Improve the Bounds of Cache-
Related Preemption Delay.” In: Real-Time Systems,
2009. ECRTS ’09. 21st Euromicro Conference on.
2009, pp. 109–118.

[4] S. Altmeyer, C. Burguiére, and R. Wilhelm. “Com-
puting the Maximum Blocking Time for Scheduling
with Deferred Preemption.” In: Future Dependable
Distributed Systems, 2009 Software Technologies for.
2009, pp. 200–204.

[5] S. Altmeyer, R.I. Davis, and C. Maiza. “Cache Related
Pre-emption Delay Aware Response Time Analysis for
Fixed Priority Pre-emptive Systems.” In: Real-Time
Systems Symposium (RTSS), 2011 IEEE 32nd. 2011,
pp. 261–271.

[6] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis.
“OUTSTANDING PAPER: Evaluation of Cache Parti-
tioning for Hard Real-Time Systems.” In: Real-Time
Systems (ECRTS), 2014 26th Euromicro Conference
on. 2014, pp. 15–26.

[7] Sebastian Altmeyer, Robert I. Davis, and Claire Maiza.
Pre-emption Cost Aware Response Time Analysis for
Fixed Priority Pre-emptive Systems. Tech. rep. Univer-
sity of York, Department of Computer Science, 2011.

[8] Sebastian Altmeyer and Gernot Gebhard. “WCET
Analysis for Preemptive Scheduling.” In: 8th Inter-
national Workshop on Worst-Case Execution Time
Analysis (WCET’08). Ed. by Raimund Kirner. Vol. 8.
OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, 2008.

[9] Sebastian Altmeyer, Claire Maiza, and Jan Reineke.
“Resilience Analysis: Tightening the CRPD Bound for
Set-associative Caches.” In: Proceedings of the ACM
SIGPLAN/SIGBED 2010 Conference on Languages,

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/03-77_COTS_RTOS.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/03-77_COTS_RTOS.pdf
https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/03-77_COTS_RTOS.pdf

REFERENCES 16

Compilers, and Tools for Embedded Systems. LCTES
’10. Stockholm, Sweden, 2010, pp. 153–162.

[10] A Arnaud and I Puaut. “Dynamic instruction cache
locking in hard real-time systems.” In: Proc. of the 14th
Int. Conference on Real-Time and Network Systems.
2006, pp. 179–188.

[11] S. Baruah. “The limited-preemption uniprocessor
scheduling of sporadic task systems.” In: Real-Time
Systems, 2005. (ECRTS 2005). Proceedings. 17th Eu-
romicro Conference on. 2005, pp. 137–144.

[12] Andrea Bastoni, Björn Brandenburg, and James Ander-
son. “Cache-related preemption and migration delays:
Empirical approximation and impact on schedulabil-
ity.” In: 6th International Workshop on Operating Sys-
tems Platforms for Embedded Real-Time Applications
(OSPERT 2010). 2010, pp. 33–44.

[13] Swagato Basumallick and Kelvin Nilsen. “Cache is-
sues in real-time systems.” In: ACM SIGPLAN Work-
shop on Language, Compiler, and Tool Support for
Real-Time Systems. Vol. 5. 1994.

[14] E. Berg and E. Hagersten. “StatCache: a probabilis-
tic approach to efficient and accurate data locality
analysis.” In: Performance Analysis of Systems and
Software, 2004 IEEE International Symposium on -
ISPASS. 2004, pp. 20–27.

[15] M. Bertogna and S. Baruah. “Limited Preemption
EDF Scheduling of Sporadic Task Systems.” In: In-
dustrial Informatics, IEEE Transactions on 6.4 (2010),
pp. 579–591.

[16] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and
G. Buttazzo. “Optimal Selection of Preemption Points
to Minimize Preemption Overhead.” In: Real-Time
Systems (ECRTS), 2011 23rd Euromicro Conference
on. 2011, pp. 217–227.

[17] M. Bertogna, G. Buttazzo, M. Marinoni, Gang Yao, F.
Esposito, and M. Caccamo. “Preemption Points Place-
ment for Sporadic Task Sets.” In: Real-Time Systems
(ECRTS), 2010 22nd Euromicro Conference on. 2010,
pp. 251–260.

[18] R.J. Bril, J.J. Lukkien, and W.F.J. Verhaegh. “Worst-
Case Response Time Analysis of Real-Time Tasks un-
der Fixed-Priority Scheduling with Deferred Preemp-
tion Revisited.” In: Real-Time Systems, 2007. ECRTS
’07. 19th Euromicro Conference on. 2007, pp. 269–
279.

[19] R.J. Bril, M.M.H.P. van den Heuvel, U. Keskin, and
J.J. Lukkien. “Generalized Fixed-Priority Scheduling
with Limited Preemptions.” In: Real-Time Systems
(ECRTS), 2012 24th Euromicro Conference on. 2012,
pp. 209–220.

[20] R.J. Bril, S. Altmeyer, M.M.H.P. Van Heuvel, R.I.
Davis, and M. Behnam. “Integrating Cache-Related
Pre-Emption Delays into Analysis of Fixed Priority
Scheduling with Pre-Emption Thresholds.” In: Real-
Time Systems Symposium (RTSS), 2014 IEEE. 2014,
pp. 161–172.

[21] B.D. Bui, M. Caccamo, Lui Sha, and J. Martinez. “Im-
pact of Cache Partitioning on Multi-tasking Real Time

Embedded Systems.” In: Embedded and Real-Time
Computing Systems and Applications, 2008. RTCSA
’08. 14th IEEE International Conference on. 2008,
pp. 101–110.

[22] Claire Burguière, Jan Reineke, and Sebastian Alt-
meyer. “Cache-Related Preemption Delay Computa-
tion for Set-Associative Caches - Pitfalls and Solu-
tions.” In: 9th International Workshop on Worst-Case
Execution Time Analysis (WCET’09). Ed. by Niklas
Holsti. Vol. 10. OpenAccess Series in Informatics (OA-
SIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2009, pp. 1–11.

[23] Claire Burguière and Christine Rochange. “On the
Complexity of Modeling Dynamic Branch Predictors
when Computing Worst-Case Execution Time.” In:
Proceedings of the ERCIM/DECOS Workshop On De-
pendable Embedded Systems. 2007.

[24] J.V. Busquets-Mataix, J.J. Serrano-Martin, R. Ors-
Carot, P. Gil, and A. Wellings. “Adding instruction
cache effect to an exact schedulability analysis of
preemptive real-time systems.” In: Real-Time Systems,
1996., Proceedings of the Eighth Euromicro Workshop
on. 1996, pp. 271–276.

[25] J.V. Busquets-Mataix, J.J. Serrano, R. Ors, P. Gil,
and A. Wellings. “Adding instruction cache effect to
schedulability analysis of preemptive real-time sys-
tems.” In: Real-Time Technology and Applications
Symposium, 1996. Proceedings., 1996 IEEE. 1996,
pp. 204–212.

[26] G.C. Buttazzo, M. Bertogna, and Gang Yao. “Limited
Preemptive Scheduling for Real-Time Systems. A Sur-
vey.” In: Industrial Informatics, IEEE Transactions on
9.1 (2013), pp. 3–15.

[27] Giorgio C. Buttazzo. HARD REAL-TIME COMPUT-
ING SYSTEMS: Predictable Scheduling Algorithms
and Applications. 3rd ed. Vol. 24. Real-Time System
Series. Springer US, 2011.

[28] “Cache-related preemption delay via useful cache
blocks: Survey and redefinition.” In: Journal of Systems
Architecture 57.7 (2011). Special Issue on Worst-Case
Execution-Time Analysis, pp. 707 –719.

[29] J.M. Calandrino and J.H. Anderson. “Cache-Aware
Real-Time Scheduling on Multicore Platforms: Heuris-
tics and a Case Study.” In: Real-Time Systems, 2008.
ECRTS ’08. Euromicro Conference on. 2008, pp. 299–
308.

[30] A.M. Campoy, A. Perles, F. Rodriguez, and J.V.
Busquets-Mataix. “Static use of locking caches vs.
dynamic use of locking caches for real-time systems.”
In: Electrical and Computer Engineering, 2003. IEEE
CCECE 2003. Canadian Conference on. Vol. 2. 2003,
1283–1286 vol.2.

[31] Marti Campoy, A Perles Ivars, and JV Busquets-
Mataix. “Static use of locking caches in multitask
preemptive real-time systems.” In: Proceedings of
IEEE/IEE Real-Time Embedded Systems Workshop
(Satellite of the IEEE Real-Time Systems Symposium).
2001, pp. 1–6.

REFERENCES 17

[32] J. Cavicchio, C. Tessler, and N. Fisher. “Minimizing
Cache Overhead via Loaded Cache Blocks and Pre-
emption Placement.” In: Real-Time Systems (ECRTS),
2015 27th Euromicro Conference on. 2015, pp. 163–
173.

[33] Christoph Cullmann, Christian Ferdinand, Gernot Geb-
hard, Daniel Grund, Claire Maiza, Jan Reineke, Benoit
Triquet, and Reinhard Wilhelm. “Predictability Con-
siderations in the Design of Multi-Core Embedded
Systems.” In: Proceedings of Embedded Real Time
Software and Systems. 2010, pp. 36–42.

[34] Peter J. Denning. “The Working Set Model for Pro-
gram Behavior.” In: Commun. ACM 11.5 (May 1968),
pp. 323–333.

[35] Huping Ding, Yun Liang, and Tulika Mitra. “Integrated
Instruction Cache Analysis and Locking in Multi-
tasking Real-time Systems.” In: Proceedings of the
50th Annual Design Automation Conference. DAC ’13.
Austin, Texas, 2013, 147:1–147:10.

[36] Huping Ding, Yun Liang, and Tulika Mitra. “WCET-
centric Dynamic Instruction Cache Locking.” In: Pro-
ceedings of the Conference on Design, Automation &
Test in Europe. DATE ’14. Dresden, Germany, 2014,
27:1–27:6.

[37] R. Dobrin and G. Fohler. “Reducing the number of
preemptions in fixed priority scheduling.” In: Real-
Time Systems, 2004. ECRTS 2004. Proceedings. 16th
Euromicro Conference on. 2004, pp. 144–152.

[38] Arvind Easwaran, Insik Shin, Insup Lee, and Oleg
Sokolsky. Bouding Preemptions under EDF and RM
Schedulers. Tech. rep. Department of Computer and
Information Science, University of Pennsylvania, 2006.

[39] “Efficient and Precise Cache Behavior Prediction for
Real-Time Systems.” In: Real-Time Systems 17.2-3
(1999).

[40] Heiko Falk and Helena Kotthaus. “WCET-driven
Cache-aware Code Positioning.” In: Proceedings of the
14th International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems. CASES
’11. Taipei, Taiwan, 2011, pp. 145–154.

[41] Heiko Falk, Sascha Plazar, and Henrik Theiling.
“Compile-time Decided Instruction Cache Locking
Using Worst-case Execution Paths.” In: Proceedings
of the 5th IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’07. Salzburg, Austria, 2007, pp. 143–
148.

[42] “Fast and Precise WCET Prediction by Separated
Cache and Path Analyses.” In: Real-Time Systems 18.2-
3 (2000).

[43] “Feasibility analysis under fixed priority scheduling
with limited preemptions.” In: Real-Time Systems 47.3
(2011).

[44] “The olympus attitude and orbital control system: A
case study in hard real-time system design and imple-
mentation.” In: Ada - Europe ’93. Ed. by Michel Gau-
thier. Vol. 688. Lecture Notes in Computer Science.
1993.

[45] Gernot Gebhard and Sebastian Altmeyer. “Optimal
Task Placement to Improve Cache Performance.” In:
Proceedings of the 7th ACM &Amp; IEEE Interna-
tional Conference on Embedded Software. EMSOFT
’07. Salzburg, Austria, 2007, pp. 259–268.

[46] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu.
“Cache-aware Scheduling and Analysis for Multi-
cores.” In: Proceedings of the Seventh ACM Interna-
tional Conference on Embedded Software. EMSOFT
’09. Grenoble, France, 2009, pp. 245–254.

[47] Jan Gustafsson, Adam Betts, Andreas Ermedahl, and
Björn Lisper. “The Mälardalen WCET Benchmarks –
Past, Present and Future.” In: ed. by Björn Lisper.
Brussels, Belgium: OCG, July 2010, pp. 137–147.

[48] Damien Hardy and Isabelle Puaut. “Estimation of
Cache Related Migration Delays for Multi-Core Pro-
cessors with Shared Instruction Caches.” In:

[49] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley,
and M.G. Harmon. “Bounding pipeline and instruction
cache performance.” In: Computers, IEEE Transac-
tions on 48.1 (1999), pp. 53–70.

[50] John L. Hennessy and David A. Patterson. Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann, 1990.

[51] Mike Holenderski, Reinder J. Bril, and Johan J.
Lukkien. “Using fixed-priority scheduling with de-
ferred preemption to exploit fluctuating network band-
width.” In: Proceedings Work in Progress (WiP) Ses-
sion of the 20th Euromicro Conference on Real-Time
Systems (ECRTS’08). 2008, pp. 40–43.

[52] “Improved cache related pre-emption delay aware re-
sponse time analysis for fixed priority pre-emptive
systems.” In: Real-Time Systems 48.5 (2012).

[53] “Instruction cache locking for multi-task real-time em-
bedded systems.” In: Real-Time Systems 48.2 (2012).

[54] M. Joseph and P. Pandya. “Finding Response Times in
a Real-Time System.” In: 29.5 (1986), pp. 390–395.

[55] U. Keskin, R.J. Bril, and J.J. Lukkien. “Exact response-
time analysis for fixed-priority preemption-threshold
scheduling.” In: Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conference on. 2010,
pp. 1–4.

[56] D.B. Kirk. “SMART (strategic memory allocation for
real-time) cache design.” In: Real Time Systems Sym-
posium, 1989., Proceedings. 1989, pp. 229–237.

[57] D.B. Kirk and J.K. Strosnider. “SMART (strategic
memory allocation for real-time) cache design using
the MIPS R3000.” In: Real-Time Systems Symposium,
1990. Proceedings., 11th. 1990, pp. 322–330.

[58] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang
Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun Park,
Minsuk Lee, and Chong Sang Kim. “Analysis of cache-
related preemption delay in fixed-priority preemptive
scheduling.” In: Computers, IEEE Transactions on
47.6 (1998), pp. 700–713.

[59] Chang-Gun Lee, Joosun Hahn, Yang-Min Seo, Sang
Lyul Min, Rhan Ha, Seongsoo Hong, Chang Yun
Park, Minsuk Lee, and Chong Sang Kim. “Enhanced

REFERENCES 18

analysis of cache-related preemption delay in fixed-
priority preemptive scheduling.” In: Real-Time Systems
Symposium, 1997. Proceedings., The 18th IEEE. 1997,
pp. 187–198.

[60] Jinkyu Lee and K.G. Shin. “Preempt a Job or Not in
EDF Scheduling of Uniprocessor Systems.” In: Com-
puters, IEEE Transactions on 63.5 (2014), pp. 1197–
1206.

[61] Yau-Tsun Steven Li and Sharad Malik. “Performance
Analysis of Embedded Software Using Implicit Path
Enumeration.” In: Proceedings of the ACM SIGPLAN
1995 Workshop on Languages, Compilers, &Amp;
Tools for Real-time Systems. LCTES ’95. La Jolla,
California, USA, 1995, pp. 88–98.

[62] J. Liedtke, H. Hartig, and M. Hohmuth. “OS-controlled
cache predictability for real-time systems.” In: Real-
Time Technology and Applications Symposium, 1997.
Proceedings., Third IEEE. 1997, pp. 213–224.

[63] C. L. Liu and James W. Layland. “Scheduling Al-
gorithms for Multiprogramming in a Hard-Real-Time
Environment.” In: J. ACM 20.1 (Jan. 1973), pp. 46–61.

[64] Tiantian Liu, Minming Li, and C.J. Xue. “Minimizing
WCET for Real-Time Embedded Systems via Static
Instruction Cache Locking.” In: Real-Time and Embed-
ded Technology and Applications Symposium, 2009.
RTAS 2009. 15th IEEE. 2009, pp. 35–44.

[65] P. Lokuciejewski, H. Falk, and P. Marwedel. “WCET-
driven Cache-based Procedure Positioning Optimiza-
tions.” In: Real-Time Systems, 2008. ECRTS ’08. Eu-
romicro Conference on. 2008, pp. 321–330.

[66] T. Lundqvist and P. Stenstrom. “Timing anomalies
in dynamically scheduled microprocessors.” In: Real-
Time Systems Symposium, 1999. Proceedings. The 20th
IEEE. 1999, pp. 12–21.

[67] W. Lunniss, S. Altmeyer, C. Maiza, and R.I. Davis.
“Integrating cache related pre-emption delay analysis
into EDF scheduling.” In: Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2013
IEEE 19th. 2013, pp. 75–84.

[68] Will Lunniss, Sebastian Altmeyer, and Robert Davis.
“A Comparison between Fixed Priority and EDF
Scheduling accounting for Cache Related Pre-emption
Delays.” In: Leibniz Transactions on Embedded Sys-
tems 1.1 (2014).

[69] Will Lunniss, Sebastian Altmeyer, and Robert I. Davis.
“Optimising Task Layout to Increase Schedulability
via Reduced Cache Related Pre-emption Delays.” In:
Proceedings of the 20th International Conference on
Real-Time and Network Systems. RTNS ’12. Pont à
Mousson, France, 2012, pp. 161–170.

[70] Will Lunniss, Sebastian Altmeyer, Giuseppe Lipari,
and Robert I. Davis. “Accounting for Cache Related
Pre-emption Delays in Hierarchical Scheduling.” In:
Proceedings of the 22Nd International Conference on
Real-Time Networks and Systems. RTNS ’14. Versaille,
France, 2014, 183:183–183:192.

[71] J. Marinho, V. Nelis, and S.M. Petters. “Temporal iso-
lation with preemption delay accounting.” In: Emerg-

ing Technology and Factory Automation (ETFA), 2014
IEEE. 2014, pp. 1–8.

[72] J.M. Marinho, V. Nelis, S.M. Petters, and I. Puaut. “An
improved preemption delay upper bound for floating
non-preemptive region.” In: Industrial Embedded Sys-
tems (SIES), 2012 7th IEEE International Symposium
on. 2012, pp. 57–66.

[73] J.M. Marinho, V. Nelis, S.M. Petters, and I. Puaut.
“Preemption delay analysis for floating non-preemptive
region scheduling.” In: Design, Automation Test in
Europe Conference Exhibition (DATE), 2012. 2012,
pp. 497–502.

[74] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.
“Evaluation Techniques for Storage Hierarchies.” In:
IBM Syst. J. 9.2 (June 1970), pp. 78–117.

[75] “Measuring the Performance of Schedulability Tests.”
In: Real-Time Systems 30.1-2 (2005).

[76] “An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms.” In: Algorithms
for Memory Hierarchies. Ed. by Ulrich Meyer, Peter
Sanders, and Jop Sibeyn. Vol. 2625. Lecture Notes in
Computer Science. 2003.

[77] E. Mezzetti and T. Vardanega. “A rapid cache-aware
procedure positioning optimization to favor incremen-
tal development.” In: Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2013
IEEE 19th. 2013, pp. 107–116.

[78] Jeffrey C. Mogul and Anita Borg. “The Effect of
Context Switches on Cache Performance.” In: Pro-
ceedings of the Fourth International Conference on
Architectural Support for Programming Languages
and Operating Systems. ASPLOS IV. Santa Clara,
California, USA, 1991, pp. 75–84.

[79] Frank Mueller. “Compiler Support for Software-based
Cache Partitioning.” In: Proceedings of the ACM
SIGPLAN 1995 Workshop on Languages, Compilers,
&Amp; Tools for Real-time Systems. LCTES ’95. La
Jolla, California, USA, 1995, pp. 125–133.

[80] Hemendra Singh Negi, Tulika Mitra, and Ab-
hik Roychoudhury. “Accurate Estimation of Cache-
related Preemption Delay.” In: Proceedings of the
1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’03. Newport Beach, CA, USA, 2003,
pp. 201–206.

[81] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean Paul
Bahsoun, and Marianne De Michiel. “PapaBench: a
Free Real-Time Benchmark.” In: WCET 4 (2006).

[82] R. Pellizzoni and M. Caccamo. “Toward the Pre-
dictable Integration of Real-Time COTS Based Sys-
tems.” In: Real-Time Systems Symposium, 2007. RTSS
2007. 28th IEEE International. 2007, pp. 73–82.

[83] Bo Peng, N. Fisher, and M. Bertogna. “Explicit Pre-
emption Placement for Real-Time Conditional Code.”
In: Real-Time Systems (ECRTS), 2014 26th Euromicro
Conference on. 2014, pp. 177–188.

[84] S.M. Petters. “Bounding the execution time of real-
time tasks on modern processors.” In: Real-Time Com-

REFERENCES 19

puting Systems and Applications, 2000. Proceedings.
Seventh International Conference on. 2000, pp. 498–
502.

[85] Guillaume Phavorin, Pascal Richard, and Claire Maiza.
“Complexity of scheduling real-time tasks subjected to
cache-related preemption delays.” In: Emerging Tech-
nologies and Factory Automation (ETFA), 2015 IEEE
Conference on. 2015, pp. 1–8.

[86] Guillaume Phavorin, Pascal Richard, and Claire Maiza.
Static CRPD-Aware Real-Time Scheduling. Work-in-
Progress session of the 27th Euromicro Conference on
Real-Time Systems (ECRTS’2015). 2015.

[87] Sascha Plazar, Paul Lokuciejewski, and Peter Mar-
wedel. “WCET-aware software based cache partition-
ing for multi-task real-time systems.” In: Proceedings
of the International Workshop on Worst-Case Execu-
tion Time Analysis. 2009, pp. 78–88.

[88] I. Puaut. “WCET-centric software-controlled instruc-
tion caches for hard real-time systems.” In: Real-Time
Systems, 2006. 18th Euromicro Conference on. 2006,
10 pp.–226.

[89] I. Puaut and C. Pais. “Scratchpad memories vs locked
caches in hard real-time systems: a quantitative com-
parison.” In: Design, Automation Test in Europe Con-
ference Exhibition, 2007. DATE ’07. 2007, pp. 1–6.

[90] Isabelle Puaut. Architecture des processeurs et
vérification de contraintes de temps-réel strict. 2002.

[91] Isabelle Puaut and Christophe Pais. Scratchpad mem-
ories vs locked caches in hard real-time systems: a
qualitative and quantitative comparison. Tech. rep.

[92] H. Ramaprasad and F. Mueller. “Bounding Preemption
Delay within Data Cache Reference Patterns for Real-
Time Tasks.” In: Real-Time and Embedded Technology
and Applications Symposium, 2006. Proceedings of the
12th IEEE. 2006, pp. 71–80.

[93] H. Ramaprasad and F. Mueller. “Bounding Worst-
Case Response Time for Tasks with Non-Preemptive
Regions.” In: Real-Time and Embedded Technology
and Applications Symposium, 2008. RTAS ’08. IEEE.
2008, pp. 58–67.

[94] H. Ramaprasad and F. Mueller. “Tightening the
Bounds on Feasible Preemption Points.” In: Real-
Time Systems Symposium, 2006. RTSS ’06. 27th IEEE
International. 2006, pp. 212–224.

[95] J. Reineke, S. Altmeyer, D. Grund, S. Hahn, and C.
Maiza. “Selfish-LRU: Preemption-aware caching for
predictability and performance.” In: Real-Time and
Embedded Technology and Applications Symposium
(RTAS), 2014 IEEE 20th. 2014, pp. 135–144.

[96] Jan Reineke. “Caches in WCET Analysis.” PhD thesis.
Univeristät des Saarlandes, 2008.

[97] Jan Reineke and Daniel Grund. “Relative Competitive
Analysis of Cache Replacement Policies.” In: Proceed-
ings of the 2008 ACM SIGPLAN-SIGBED Conference
on Languages, Compilers, and Tools for Embedded
Systems. LCTES ’08. Tucson, AZ, USA, 2008, pp. 51–
60.

[98] Jan Reineke, Björn Wachter, Stefan Thesing, Rein-
hard Wilhelm, Ilia Polian, Jochen Eisinger, and Bernd
Becker. “A Definition and Classification of Timing
Anomalies.” In: 6th International Workshop on Worst-
Case Execution Time Analysis (WCET’06). Ed. by
Frank Mueller. Vol. 4. OpenAccess Series in Informat-
ics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2006.

[99] “ILP-Based Interprocedural Path Analysis.” In: Em-
bedded Software. Ed. by Alberto Sangiovanni-
Vincentelli and Joseph Sifakis. Vol. 2491. Lecture
Notes in Computer Science. 2002.

[100] “Scalable and precise refinement of cache timing
analysis via path-sensitive verification.” In: Real-Time
Systems 49.4 (2013).

[101] “Integrated Intra- and Inter-task Cache Analysis for
Preemptive Multi-tasking Real-Time Systems.” In:
Software and Compilers for Embedded Systems. Ed. by
Henk Schepers. Vol. 3199. Lecture Notes in Computer
Science. 2004.

[102] J. Schneider. “Cache and pipeline sensitive fixed pri-
ority scheduling for preemptive real-time systems.”
In: Real-Time Systems Symposium, 2000. Proceedings.
The 21st IEEE. 2000, pp. 195–204.

[103] J. Simonson and J.H. Patel. “Use of preferred pre-
emption points in cache-based real-time systems.” In:
Computer Performance and Dependability Symposium,
1995. Proceedings., International. 1995, pp. 316–325.

[104] Jan Staschulat and Rolf Ernst. “Scalable Precision
Cache Analysis for Real-time Software.” In: ACM
Trans. Embed. Comput. Syst. 6.4 (Sept. 2007).

[105] Yudong Tan and Vincent Mooney. “Timing Analysis
for Preemptive Multitasking Real-time Systems with
Caches.” In: ACM Trans. Embed. Comput. Syst. 6.1
(Feb. 2007).

[106] Yudong Tan and Vincent J. Mooney III. “WCRT
Analysis for a Uniprocessor with a Unified Priori-
tized Cache.” In: Proceedings of the 2005 ACM SIG-
PLAN/SIGBED Conference on Languages, Compil-
ers, and Tools for Embedded Systems. LCTES ’05.
Chicago, Illinois, USA, 2005, pp. 175–182.

[107] “Techniques to increase the schedulable utilization
of cache-based preemptive real-time systems1.” In:
Journal of Systems Architecture 46.4 (2000), pp. 357
–378.

[108] Stephan Thesing. “Safe and Precise WCET Determi-
nation by Abstract Interpretation of Pipeline Mod-
els.” eng. PhD thesis. Postfach 151141, 66041 Saar-
brcken: Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes, 2004.

[109] “Timing Analysis for Instruction Caches.” In: Real-
Time Systems 18.2-3 (2000).

[110] Hiroyuki Tomiyama and Nikil D. Dutt. “Program Path
Analysis to Bound Cache-related Preemption Delay in
Preemptive Real-time Systems.” In: Proceedings of the
Eighth International Workshop on Hardware/Software
Codesign. CODES ’00. San Diego, California, USA,
2000, pp. 67–71.

20

[111] Hiroyuki Tomiyama and Hiroto Yasuura. “Code Place-
ment Techniques for Cache Miss Rate Reduction.”
In: ACM Trans. Des. Autom. Electron. Syst. 2.4 (Oct.
1997), pp. 410–429.

[112] Hai-Nam Tran, Frank Singhoff, Stéphane Rubini, and
Jalil Boukhobza. “Addressing cache related preemption
delay in fixed priority assignment.” In: Emerging Tech-
nologies and Factory Automation (ETFA), 2015 IEEE
Conference on. 2015, pp. 1–8.

[113] X. Vera, B. Lisper, and Jingling Xue. “Data caches
in multitasking hard real-time systems.” In: Real-Time
Systems Symposium, 2003. RTSS 2003. 24th IEEE.
2003, pp. 154–165.

[114] Chao Wang, Zonghua Gu, and Haibo Zeng. “Integra-
tion of Cache Partitioning and Preemption Threshold
Scheduling to Improve Schedulability of Hard Real-
Time Systems.” In: Real-Time Systems (ECRTS), 2015
27th Euromicro Conference on. 2015, pp. 69–79.

[115] Yun Wang and M. Saksena. “Scheduling fixed-priority
tasks with preemption threshold.” In: Real-Time Com-
puting Systems and Applications, 1999. RTCSA ’99.
Sixth International Conference on. 1999, pp. 328–335.

[116] Bryan C. Ward, Abhilash Thekkilakattil, and James
H. Anderson. “Optimizing Preemption-Overhead Ac-
counting in Multiprocessor Real-Time Systems.” In:
Proceedings of the 22Nd International Conference on
Real-Time Networks and Systems. RTNS ’14. Versaille,
France, 2014, 235:235–235:243.

[117] S. Wasly and R. Pellizzoni. “Hiding memory latency
using fixed priority scheduling.” In: Real-Time and
Embedded Technology and Applications Symposium
(RTAS), 2014 IEEE 20th. 2014, pp. 75–86.

[118] R.T. White, F. Mueller, C.A. Healy, D.B. Whalley, and
M.G. Harmon. “Timing analysis for data caches and
set-associative caches.” In: Real-Time Technology and
Applications Symposium, 1997. Proceedings., Third
IEEE. 1997, pp. 192–202.

[119] Jack Whitham, Neil C. Audsley, and Robert I. Davis.
“Explicit Reservation of Cache Memory in a Pre-
dictable, Preemptive Multitasking Real-time System.”
In: ACM Trans. Embed. Comput. Syst. 13.4s (Apr.
2014), 120:1–120:25.

[120] Reinhard Wilhelm, Jakob Engblom, Andreas Er-
medahl, Niklas Holsti, Stephan Thesing, David Whal-
ley, Guillem Bernat, Christian Ferdinand, Rein-
hold Heckmann, Tulika Mitra, Frank Mueller, Is-
abelle Puaut, Peter Puschner, Jan Staschulat, and
Per Stenström. “The Worst-case Execution-time Prob-
lem&Mdash;Overview of Methods and Survey of
Tools.” In: ACM Trans. Embed. Comput. Syst. 7.3 (May
2008), 36:1–36:53.

[121] Andrew Wolfe. “Software-based Cache Partitioning for
Real-time Applications.” In: J. Comput. Softw. Eng. 2.3
(Mar. 1994), pp. 315–327.

[122] “Worst Case Execution Time Analysis for a Processor
with Branch Prediction.” In: Real-Time Systems 18.2-3
(2000).

[123] “Worst-case response time analysis of real-time tasks
under fixed-priority scheduling with deferred preemp-
tion.” In: Real-Time Systems 42.1-3 (2009).

[124] Gang Yao, G. Buttazzo, and M. Bertogna. “Feasi-
bility Analysis under Fixed Priority Scheduling with
Fixed Preemption Points.” In: Embedded and Real-
Time Computing Systems and Applications (RTCSA),
2010 IEEE 16th International Conference on. 2010,
pp. 71–80.

[125] Wei Zhang and Jun Yan. “Accurately Estimating
Worst-Case Execution Time for Multi-core Processors
with Shared Direct-Mapped Instruction Caches.” In:
Embedded and Real-Time Computing Systems and Ap-
plications, 2009. RTCSA ’09. 15th IEEE International
Conference on. 2009, pp. 455–463.

	Introduction
	Basic notions
	Caches
	Preemption delays
	Scheduling
	Evaluation techniques
	Technique roadmap

	Timing Analysis
	General WCET computation issue
	WCET cache analysis
	Including Cache-Related Preemption Delays into the wcet

	Memory management
	Cache partitioning
	Cache locking
	Memory layout

	Enhanced task models
	Cache-aware scheduling analysis
	Limited preemption scheduling
	Cache-aware scheduling

	Prospects
	Conclusion

