
Integrating semantic properties within a Petri net
based scheduling tool

Christian Fotsing
LIAS, ENSMA, France

fotsingc@ensma.fr

Annie Geniet
LIAS, University of Poitiers, France

annie.geniet@univ-poitiers.fr

Abstract—We consider real-time applications with interacting
periodic tasks which may contain conditional statements. When
the behaviours of the tasks are linked to the context, they may be
interdependent, and some theoretical configurations may actually
be impossible. Our concern is to reduce the schedulability
analysis to the only coherent behaviours. We thus propose a
model-driven approach. We first model the application and the
semantic constraints coming from the tests. Then we propose a
Petri net based model, whose aim is to enumerate the possible
behaviours, and which takes the structural, the temporal and the
semantic constraints into account.

I. INTRODUCTION

We consider real-time applications dedicated to process
control, which are modelled by a set of periodic tasks. They
are characterized by the existence of temporal constraints,
induced by the dynamics of the controlled process. The
validation of such applications does not only depend on the
functional validation, which we assume to be done, but also
on the temporal validation, which consists in proving that the
application can be executed in such a way that all the temporal
constraints are met.
Our general aim is to develop a complete model-driven
methodology, using the formal model of Petri nets for the
schedulability analysis of applications whose tasks can contain
conditional statements. The tool must explicitly consider these
conditional statements, examine the correlations which may
exist between the behaviours of the different tasks, when
the behaviours depend on the context, and produce a precise
description of the effectively possible behaviours of the whole
application.
Classically, each task Ti = < ri, Ci, Di, Pi > is modelled by
four temporal parameters [11]: (1) its first release time ri; (2)
its worst case execution time (WCET) Ci, which is the highest
computation time of the task; (3) its relative deadline Di,
which is the maximum acceptable delay between the release
and the completion of any instance of the task; (4) its period
Pi. A task consists of an infinite set of instances (or jobs)
released at times ri + k × Pi where k ∈ N.
When a task contains conditional instructions, the WCET
corresponds to the longest execution path of the task [15].
It can be obtained either by simulation or by static syntactical
analysis of the task code [15].
As to the schedulability analysis, two methods can be consid-
ered. A linear model can be deduced from each task, whose
duration is the WCET of the initial conditional task. Then the

classical scheduling results can be used. But we have proved
in [8] that such an analysis can be rather pessimistic, and a
yet valid application can be declared infeasible. Moreover, it is
not clear how the different real-time primitives are taken into
account during the schedulability analysis. Thus we propose an
alternative method which consists in considering conditional
statements explicitly during the analysis. This means on the
one hand to consider conditional statements from the structural
point of view: the notion of linear schedule will be replaced
by the notion of scheduling tree [8]. And on the other hand,
it also means to consider some semantic aspects: when the
behaviours of different tasks are induced by their environment,
the behaviours of these tasks may be correlated, and thus
some theoretical combinations of behaviours may be actually
impossible.
More precisely, we take into account: (1) the intra-task
relations within a task: we consider the relations between
the behaviours chosen in successive conditionals in which a
same value is examined; (2) the inter-tasks relations between
several tasks, which result from the fact that if they examine
the same value coming from the context to determine their
behaviours, these behaviours will be interdependent.
Considering these relations leads to more consistent schedula-
bility results. In addition, the model is closer to the reality, and
thus its direct analysis limits the over-sizing of the material,
what in turn reduces the costs.

A. General context

In this paper, we consider real-time applications composed
of interacting periodic tasks. They run on pre-emptive unipro-
cessor system. The applications may use real-time primitives:
L(R) (lock a resource R), U(R) (unlock a resource R), S(M)
(send a message M) and R(M) (receive a message M). We
assume that the emission of a message is non blocking, but
the reception is.
The tasks are given in a high-level language, and consist of
sequential series of general blocks which can be: (1) blocks
composed of imperative statements: b(d) denotes an imperative
block, with execution time equal to d; (2) conditional state-
ments: if condition then S1 else S2 endif, where S1 and S2 are
sequential series of general blocks; (3) real-time primitives,
which assume to have a duration equal to 0, which in fact
means that the actual durations are included in the durations
of the adjoining blocks.

Two approaches are usually considered in order to solve
the schedulability problem: (1) the on-line methods where a
scheduling algorithm is implemented within the scheduler; (2)
the off-line methods where a schedule, already computed, is
stored within a table, used by the dispatcher. We use here
an off-line approach, because in our context, there is no
optimal on-line algorithms [6], where an optimal algorithm
is an algorithm which computes a valid schedule for any
feasible system. The main benefit of off-line strategies comes
from the raise of the scheduling power compared to the on-
line methods: on-line scheduling algorithms make decisions
according to the instantaneous state of the system, meanwhile
off-line methods are based on a complete knowledge of the
tasks. In addition, these methods provide a precise description
of the behaviour of the application. The price to pay is a high
complexity, generally exponential in time and space, which
can be improved by the use of good heuristics.
We adopt a model-driven approach, based on Petri nets.
Indeed, Petri nets are well suited here since they enable to
model and simulate the execution of interacting tasks. In
addition, we have shown in [10] how the time and the timing
constraints can be modelled and verified using some extensions
of Petri nets: the maximal firing rule and terminal markings.
These extensions will be presented in section 4. Then the
labelled terminal marking graph will collect the valid efective
behaviours of the application, and thus its analysis will lead
to schedulability conclusions.

B. Related works

Several authors have taken the conditional statements into
account, in order to get more realistic models, and to obtain
more precise schedulability conclusions. The works of [12]
propose to consider conditional task graphs to model complex
precedence constraints between tasks: the precedence relations
are associated to conditions. As to the tasks, they are assumed
to be linear, and on-line non pre-emptive scheduling, based
on dynamic priorities, is considered. The researches of [14]
concern distributed environments. The authors represent a
task as a set of conditional parallel branches, with each a
probability of being executed. Then the authors propose an
incremental off-line construction of schedules, which uses
the probability of choosing a branch, as well as the relative
deadlines. The works of [5] combines a probabilistic approach
and fixed priority strategies, to schedule tasks with uncertain
execution times. The worst case execution time C is replaced
by a set of worst case execution ck, with each a probability
P (C = ck) to be obtained. Then, the authors use an approach
based on the calculation of the worst response time for fixed
priority algorithms. In the recurrent task model [2], each task is
split into sub-tasks and is modelled as a directed acyclic graph,
associated to a period. Each subtask has its own temporal
parameters (execution time and relative deadline), and there
are minimal delays between the activations of consecutive sub-
tasks. A schedulability analysis based on the demand bound
and request bound functions, for either dynamic or static
priority strategies is proposed. Finally, in [1], a state transition

graph is used to take the conditional statements into account.
The nodes describe the observable states of the task, and the
edges describe the transitions between two observable states.
Then the synchronized product of the graphs modelling the
tasks is built. Schedulability conclusions are deduced from
the properties of the resulting graph, the considered strategies
are priority driven.

C. Our contribution

The precedent approaches concern contexts which are dif-
ferent from our context, and the objectives are not exactly
the same as ours. In these papers, tasks do not share critical
resources while we aim to consider critical sections; tasks
have the same first release time, we want to also consider late
released tasks; tasks have due dates equal to the periods while
we want to consider constrained deadlines; some papers deal
with non pre-emptive systems, we consider pre-emptive ones.
In addition, we found no approaches that take the semantic
relations between the tests associated to the conditional state-
ments into account. Finally, the schedulability analysis mostly
concerns on-line priority-driven strategies. The analysis leads
to feasibility conditions, but provides no precise description
of the actual behaviour of the application. And when off-
line techniques are used, they only produce (linear) schedules
where we aim to get scheduling trees, which globally depict
the effective behaviours of the application, and can take
semantic constraints into account.
If conditional statements may be induced by any kind of tests,
we restrict the semantic analysis to the tests on input values
of the tasks. For example, they may be thresholding tests
(Temperature < 40) or identification tests (x = 5). The
tested values are assumed to be constant during the execution
of any instance of the task. They are e.g. parameters IN of an
ADA procedure that are read each time the task is released.
It can also correspond to messages in OASIS with accurate
visibility dates [1]. The other tests will only be considered
during the modelling of the application. Any test t has a
duration d(t). For formalization reasons, we will model a test
of duration d(t) > 1 as a block b of duration d(t) − 1 and a
final test of duration 1.
Now, we are here interested in the temporal validation of the
application which also requires to verify that the application
is correct from the structural point of view. This means that
within a task, each unlocked resource has previously been
locked and each locked resource is then unlocked. We also
require that each sent message is received and each message
for which a task waits is actually sent.
The rest of the paper is as follows: in part 2, we present the
execution model of a task, we introduce the notion of intra-
task incompatibility and we present the temporal model of a
task. In section 3, we present the model of an application, and
we focus on the incompatibility relations, which model the
inter-tasks relations. Finally, in section 4 we present our Petri
net based model, which consists of three layers: one for the
time management (the clock systems), one for the application
itself, and one intermediate layer which supports the semantic

relations.

II. THE TASK MODELS

Classically, a task Ti which contains conditional statements
can be modelled as a (labelled) tree (see figure 2). The
different branches of the tree correspond to the different
possible behaviours of the task. Now, if two blocks are
conditional statements which test the same value (e.g. input
of the task), the choices of the branch in both conditionals are
correlated, and some combinations of choices are impossible
in practise. We introduce the incompatibility relation to model
this correlation.

A. Execution model of a task

We first introduce some notations: (1) Ri is the set of
the resources used by Ti; (2) EMi (RMi) are respectively
the sets of the messages sent (received) by Ti; (3) ai is
an elementary unitary instruction (b(d) corresponds to d
instructions ai); (4) T esti is the set of the tests of the task
Ti; (5) ResTesti = {t+ij , t−ij / tij ∈ T esti} the set of the
results of the tests of T esti.
Then we define an alphabet αβi as
αβi = {ai} ∪ ResTesti ∪ {L(R), U(R);R∈Ri} ∪
{S(M);M∈ EMi} ∪ {R(M);M ∈ RMi}.
The task Ti is modelled by a tree whose links are labelled
by αβi. We also associate an integer Temp(η) to each node
η, which corresponds to the execution time of the portion of
code that has led to the associated state:
Temp : {nodes of the tree} → N with,
Temp(root) 0 and Temp(η) = Temp(Parent(η)) +
dur(label(link(parent(η) → η)))
where the duration function dur gives the times required to
complete the different actions:
dur : αβi → N, dur(ai) = 1, dur(t+ij) = dur(t−ij) = 1 and
dur(L(R)) = dur(U(R)) = dur(S(M)) = dur(R(M)) = 0.
The structural execution tree of a task is a tree such that
each node η holds a key equal to Temp(η), the links are
labelled by the alphabet αβi and the branches of the tree
correspond to the possible behaviours of the task.

B. The intra-task relation and the effective execution tree

The incompatibility relation RIT i models the incoher-
ences that can exist along a structural behaviour of a task. If
T estIni is the set of tests on some input parameters of Ti and
ResTestIni the set of results of these tests, RIT i is defined
on ResTestIni by: ∀ t, t′ ∈ ResTestIni, t RIT i t′ iff
t ⇒ t′ (where t = not(t)). For example, we have (x <= 5)
RIT i (x > 10).
A behaviour of a task is coherent and thus effective iff it
does not contain two incompatible test results. The execution
tree is thus reduced to these only behaviours. Intuitively,
a branch of the effective execution tree corresponds to a
behaviour of the task, i.e. the label of the branch is equal
to one effective behviour, and there are as much branches as
effective behaviours. In this tree, the outgoing link of a simple

node is labeled either by an imperative statement, or by a real-
time primitive, or by one alternative of a test, whose other
alternative is incompatible with a previously encountered test.
And the outgoing links of a double note are labelled by the
two alternatives of a test. Let us consider the figure 1. The
left tree is the complete tree. The test results (t < 10) and
(x > 10) are incompatible, thus the behaviour Comp1,2 is
removed from the tree. Thus we get the effective tree on the
right. A complete formal definition of the effective execution
tree can be found in [9].

Fig. 1. Effective execution tree of a task. Each link corresponds to one
processing time unit

C. Temporal model of a task

The temporal model of a task is derived from the task
execution model. The execution time of a task is no longer
modelled by its worst execution time as in classical linear
approaches, but by a multi set of execution times ζi =
{Cik, k ∈ 1..li} where li is the number of effective behaviours
of the task. The Cik correspond to the execution times of the
effective behaviours of the task. These times are the keys of
the leaves of the effective execution tree of the task. The others
temporal parameters ri, Di and Pi remain unchanged. For the
task of the figure 1, the multi set ζi is equal to {7, 8, 9}.

III. THE MODEL OF THE APPLICATION

We consider an application composed of n tasks
(T1, T2, . . . , Tn), for which the effective execution trees are
known. Again, among the possible behaviours of the appli-
cation, some may be structurally correct, but incoherent from
the semantic point of view.
We aim to capture these incoherent behaviours in order to
restrict the temporal analysis to the only effective ones. For
that purpose, we first extend the incompatibility relation to
ResTestIn = ∪n

i=1ResTestIni. Next we derive an in-
compatibility relation on the set of behaviours of the tasks,
which express the inter-task relation. Since this derivation may
contain redundancies, we propose a minimization algorithm of
the incompatibility relation on the tests, in order to reduce the
redundancies, what in turn will improve the efficiency of the
implementation step.

A. The general incompatibility relation RIT

The incompatibility relation RIT is defined on
ResTestIn by: ∀ t, t′ ∈ ResTestIn, t RIT t′ iff: (1)
let i and j be such that i 6= j, t ∈ ResTestIni and t′ ∈
ResTestInj , then ri = rj and Pi = Pj ; (2) t ⇒ t′.
Point (1) assures that both tests consider the same values, thus
it makes sense to look for a possible correlation between their
result. It also enables to compare the behaviours of the tasks
instance by instance.

B. The inter-task relation RI

The inter-task relation is derived from the relation RIT ,
what we denote RIT . RI. The relation RI is defined on
the set of effective behaviours of a task in the following way:
let Compik and Compi′k′ be two effective behaviours of the
tasks Ti and Ti′ , with i 6= i′, then Compik RI Compi′k′ iff
∃ t ∈ ResTestIni, t′ ∈ ResTestIni′ such that t appears in
Compik, t′ appears in Compi′k′ and t RIT t′.
The following example illustrates this notion. We consider a
real-time system S composed of two tasks T1 and T2 described
on figure 2. The relation RIT is equal to {((x ≥ 10)T1 ,(x <

Fig. 2. The system S = < T1, T2 >

5)T2), ((y ≥ 8)T1 , (y < 4)T2)} (where (x ≥ 10)T1 means that
the test result (x ≥ 10) comes from the task T1). From (x ≥
10)T1 RIT (x < 5)T2 , we derive the relations Comp12 RI
Comp21, Comp12 RI Comp22, Comp13 RI Comp21 and
Comp13 RI Comp22, and from (y ≥ 8)T1 RIT (y < 4)T2

we derive Comp13 RI Comp22. Now, we can notice that the
relation Comp13 RI Comp22 is generated twice. And since
the relation induced by (y ≥ 8)T1 RIT (y < 4)T2 is included
in the relation induced by (x ≥ 10)T1 RIT (x < 5)T2 , we
can suppress the relation (y ≥ 8)T1 RIT (y < 4)T2 without
changing the induced relation.
The purpose of the section III-C is thus to define a minimal
relation RIT min which induces the same relation RI.

C. Minimization of RIT
Let RIT be an incompatibility relation on ResTestIn. A

relation RIT min minimizes RIT if it verifies the following
properties: (1) RIT min ⊆ RIT ; (2) RIT min . RI; (3)
if we remove any element from RIT min, the generated
relation RI ′ is strictly included in RI (RI ′ (RI).
The following algorithm (A1) computes a minimized relation
RIT min from RIT :
(1) RIT min := ∅: the relation RIT min is initially empty;
(2) for every pair (tsim, trjk) ∈ RIT , there exist Prei and
Prej such that Prei.t

s
im and Prej .t

r
jk are the prefixes of at

least one effective behaviour of Ti and Tj respectively. They
correspond to what the tasks have done before they reach tsim
and trjk respectively:

(2-a) if ∃ ts
′

im′ ∈ ResTestIni with Prei = u.ts
′

im′ .v and
(ts

′

im′ , trjk) ∈ RIT , then reject (tsim, trjk);
(2-b) conversely if ∃ tr

′

jk′ ∈ ResTestInj with Prej =
u′.tr

′

jk′ .v
′ and (tsim, tr

′

jk′) ∈ RIT , then reject (tsim, trjk);
(2-c) if ∃ ts

′

im′ ∈ ResTestIni, and ∃ tr
′

jk′ ∈ ResTestInj

with Prei = u.ts
′

im′ .v and Prej = u′.tr
′

jk′ .v
′, and with

(ts
′

im′ , tr
′

jk′) ∈ RIT , then reject (tsim, trjk);
(2-d) else, add (tsim, trjk) to RIT min: RIT min :=

RIT min ∪ {(tsim, trjk)}.
The idea is that when a pair of behaviours are incompatible
because of several couples in the relation RIT , we only keep
the upstream couples. Couples which appear later are useless
for the construction of RI. We have the following result [9]:

Proposition 1: The relation computed by the algorithm A1
minimizes the relation RIT .

However, minimizing RIT reduces the redundancies, but
some may still remain. This corresponds to cases where the
incompatibilities induced by two distinct pairs of RIT min

have a non-empty intersection, but each also contains specific
pairs.
The next step consists in the validation of the application.
Our aim is to propose a methodology for the schedulability
analysis which also takes the incompatibility relations into
account, so that the feasibility conclusions are based on the
only coherent behaviours. For that aim, we use a model-
driven approach, based on Petri nets. We extend the approach
proposed in [10] for linear tasks. The proposed method con-
sists in modelling the application, and then to enumerate the
possible valid schedules (by means of a marking graph). The
simulation of the net must provide fully valid behaviours of
the application, where validity concerns as well the structural
validity as the temporal. The initial model is composed of
two parts: the structural net which models the application,
and the clock system, which models the time and together
with the initial marking and the terminal set, it also models
the temporal constraints. This model has then been enlarged
to tasks with conditional statements by [4], but the coherence
of the behaviours has not been taken into account.
Our aim is now to adapt the Petri net model so that it also

models the incompatibility relations. The model will then
again enable to enumerate the valid scheduling trees of the
application. The aim of section IV is to present our model.

IV. OUR PETRI NET BASED APPROACH

The model that we propose is meant as a tool for the vali-
dation of the application: its analysis will provide scheduling
trees which will be both temporally and structurally valid,
and which will obey all the coherence rules given by the
incompatibility relations. The general structure of our net is
given in figure 3.

Fig. 3. General Petri net model of an application of two tasks with one
incompatibility. The net is composed of three layers.

The net is composed of three layers. The task system models
the different tasks and their interactions in a classical way.
Each transition has the place processor, which contains one
token since we consider uniprocessor systems, as input and
output. The place Processor is not represented on the figure
for clarity reasons. Then we have a temporal system where
a source transition model the time, and local clocks manage
the periodic reactivation of the tasks. These two parts were
present in the previous models. We have added a new layer,
which aims to assure the coherence of the behaviour of the
application. Finally, the net runs under the maximal firing rule:
only maximal (as to the inclusion relation) enabled transition
sets fire.

A. The structural layer

Each task is modelled by a net which is a direct translation
of the tree given figure 2. In order to reduce the number of
places and transitions, an imperative block whose duration is
1 is represented by 1 place and 1 transition, a block whose
duration is 2 by 2 places and 2 transitions, and a block whose
duration is greater than or equal to 3 by 3 places and 3
transitions (see figure 4). A conditional statement induced by
a test tij is modelled by a place with two output transitions
Tt+ij

and Tt−ij
. Messages are modelled by means of mailboxes.

The last transition before the emission of a message produces
a token in the mail box, and the first transition of a block

following a reception consumes one token from the mailbox.
Finally, there is one place for each critical resource, whose
initial marking equals the number of instances of the resource.
Here again, when a resource is locked (resp. unlocked), the
previous (resp. following) block ends (resp. starts) with the
consumption (resp. production) of a token from (resp. in)
the resource place. Each task Ti starts with a coloured place
Activi, to which two colours a and b are associated. When the
place holds a token a, it means that a new instance has been
activated, but has not yet started execution, and when it holds
a token b, it means that the previous instance has completed
execution. Finally, each last transition Endik (k ∈ 1 . . . li) of
the task Ti (there are as many such transitions as effective
behaviours) verifies W (Endik, Activi)= b. Then the task can
start execution only if this place holds a token a and a token b.
The initial marking is defined by: if ri = 0 then M0(Activi)
= a + b, else M0(Activi) = b.

d-2

d-2

t1 t1t1

t2 t2

t3

d = 1

d = 2

d ≥ 3

Fig. 4. Petri net model of a block b(d)

B. The temporal layer

The temporal systems consists of a source transition RTC
and of a local clock for each task. RTC is the global clock of
the system. Since the net runs under the maximal firing rule,
it is fired each time a transition set is fired. Thus each firing
of RTC models a time unit. Let Ti be a task. Its local clock
is composed of a place Time(i), which counts the elapsed
time units since the last reactivation of the task, and of ki

transitions Clkij . If Ti is linear, then ki = 1, if it admits li
effective behaviours, then, if its first release time equals 0 then
ki = li (j ∈ 1 . . . li) else ki = li + 1 (j ∈ 0 . . . li). And finally
we have W (Time(i), Clkij) = Pi and W (Clkij , Activi) =a.
The firing of a transition Clkij models the reactivation of the
task. Exactly one transition Clki,j fires each period.
The initial marking of the place Time(i) is defined by:
M0(Time(i)) = Pi − ri + 1 if 0 < ri < Pi and
M0(Time(i)) = 1 if ri = 0.
Finally, to consider the relative deadlines, we define a terminal
set I: a transition set can fire only if the resulting marking
belongs to the terminal set. The terminal set is defined by:
M ∈ I ⇔ (1) M(Time(i)) > Di ⇒ M(Activi) = b and (2)
M(Time(i)) = 1 ⇒ M(Activi) = a+b or M(Activi) = b
and (3) M(Time(i)) ≤ Pi.

Point 1. means that after deadline, the pending instance must
be completed. Point 2. means that at each reactivation date, the
task must have completed the previous instance. The second
case (M(Activi) = b) corresponds to the initialization of the
net when ri = Pi − 1. And finally, point 3. assures that the
reactivations are periodic, with period Pi.

C. The semantic layer

The aim of the semantic layer is to implement the in-
compatibility relation so that during the simulation, it is
impossible for two tasks to choose, during the same period,
two incompatible behaviours. For that purpose, we implement
the incompatibility relation RITmin which we know to be
minimal. For each pair of incompatible tests (tsij , t

s′

i′j′) in
RITmin with i < i′, we create a place Exclts

ijts′
i′j′

, which
initially contains one token.
Then we have W (Exclts

ijts′
i′j′

, Tts
ij

)=W (Exclts
ijts′

i′j′
, Tts′

i′j′
)=1:

the incompatible tests are in mutual exclusion. Then we have
to restore the mutual exclusion token at the end of the tasks.
We thus add a place Semik for each behaviour Compik of a
task Ti, initially empty. Then we have W (Endik, Semik)=1=
W (Semik, Clkik). In this way, we mark the chosen behaviour.
At the time of the next reactivation on the task, the transition
Clkik will be fired. It must then refill the mutual exclusion
places that have be emptied by the previous instance. For
that aim, we consider the list Lik of the results of tests used
along Compik, which are associated to a mutual exclusion
place. For each tsij in Lik, for any place Exclts

ijts′
i′j′

, we have
W (Clkik, Exclts

ijts′
i′j′

)= 1 and for any place Exclts′
i′j′ t

s
ij

, we
have W (Clkik, Exclts′

i′j′ t
s
ij

)= 1.
Now, if the task is not linear, and is late released (ri > 0), we
add a last place Semi0, which initially contains one token. It
verifies W (Semi0, Clki0) = 1. It assures the first release of
the task, when no previous instance has been processed, thus
no refilling is required. The figure 5 illustrates this case.

Fig. 5. Semantic layer of task Ti with ri > 0

D. The idle task

In general, when U < 1, the processor remains idle
part of the time (P (1 − U) time units each hyperperiod
P = lcm(P1, . . . , Pn)). If only conservative scheduling is
considered, the idle times take place only when there are
no pending tasks. But in the context of the dependent tasks,
conservative strategies are not optimal, and it is sometimes
necessary to introduce idle times even when there are pending
tasks in order to avoid further temporal faults [3]. For that
aim, we complete the model and add a new task, the idle task
T0, which models the processor inactivity.
But, if the tasks have non deterministic execution times, the
number of idle times is neither deterministic. Thus the duration
of the idle task cannot be statically determined, it has to be
adjusted dynamically. The least number of idle time units is
P (1 − Umax) where Umax is obtained using the WCET for
each task. Now, Umax may be greater than 1. In such a case,
if the semantic coherence is not considered, the application
is simply non feasible. But if we take the coherence into
account, things may be slightly different. Indeed, it can be the
case that the behaviours corresponding to a utilization factor
greater than 1 correspond in fact to non effective behaviours.
Thus, provided that Umin < 1, the application must be further
analysed.
Thus, the problem is to determine the temporal parameters
and the behaviour of the idle task. We set r0 = 0 and
D0 = P0 = P = lcm(P1, . . . , Pn). Then initially C0 is set
to P (1−Umax). Each time a task chooses an alternative in a
conditional, the duration of the longest still possible behaviour
is compared to the duration that has been taken into account
for the current value of C0. If it is shorter, then C0 is increased
by the difference.
To model the idle task, we first add Time(0) and Clk0 to the
temporal system (defined as for any other task). Then we must
consider two cases:
(1) if P (1 − Umax) ≥ 0, it is modelled by one place
Activ0 and one transition Idle0. Now, let Tts

ij
be a transition

corresponding to the alternative of a test. Let d1 be the longest
execution time of the behaviours containing this test. If Tts

ij

is the first test in these behaviours, then d2 is equal to the
WCET of the tasks Ti, else, let Tts′

ij′
be the test just before

Tts
ij

. Then d2 is the longest duration of the behaviours which
contain Tts′

ij′
. Finally, we set v = d2 − d1. If v > 0, then we

have W (Tts
ij

, Activ0) = v, else there is no arc between Tts
ij

and Activ0. And we have W (Clk0, Activ0) = P (1−Umax),
and W (Time(0), Clk0) = P : the idle task is reactivated each
hyperperiod;
(2) we have P (1− Umax) ≤ 0 but P (1− Umin) ≥ 0. In this
case, we create 3 places (Activ0, Lateness and Error) and
3 transitions (Idle0, Empty and Clk′0). Initially, Activ0 and
Error are empty, and Lateness holds d = |P (1 − Umax)|
tokens. We also have W (Clk0, Lateness) = d. The transition
empty is synchronized [13] on the always occurring event (e),
and we have W (Lateness, Empty) = W (Activ0, Empty) =
1. Each time a token is produced in the place Activ0, if

there is still lateness, it is immediately consumed, and the
lateness decreases of one unit. The arcs between the task
system and Activ0 are defined as in the case 1. Finally,
we have W (Time(0), Clk′0) = W (Time(0), Clk0) = P ,
W (Lateness, Clk′0) = 1 = W (Clk′0, Error): if there is
still lateness when the idle task is reactivated, these means
that for the precedent hyperperiod, the actual value of U was
greater than 1, thus a temporal fault had occurred. Finally,
there is an inhibitor arc between Lateness and Clk0. Thus
the transition Clk0 which reactivates the idle task can only
fire if the behaviour of the application during the previous
hyperperiod corresponded to a value of U less than 1. And
we finally add the property M(Error) = 0 in the definition
of the terminal set. The figure 6 illustrates the modelling of
the idle task. The validation of our modelling relies on the

Fig. 6. Modelling of the idle task

next two results:
• During a same period, two tasks cannot execute two

incompatible behaviours.
• Each time a task is reactivated, it disposes of all its

effective behaviours, i.e. no possibly is missed.
The detailled proof of this result can be found in [9]. Thus sim-
ulation will only produce valid [10] and effective behaviours
of the application.

V. CONCLUSION AND PERSPECTIVES

We have presented a formal model for real-time applications
which takes the structure of the tasks, the temporal constraints
and the semantic coherence constraints into account. Then, the
analysis of the net, by means of the terminal marking graph
will provide schedulability conclusions, and, if any exist, valid
scheduling trees will be produced. One benefit of our approach
is that it enables to assure the structural, the temporal and the
semantic validities together.
Our model is got from the model proposed in [10] [4] to which
a semantic layer has been added. For that aim, we have first

defined an incompatibility relation induced by the semantics
of the tests, and we have minimized this relation in order to
minimize the number of places and transitions of the semantic
layer. The further investigations will concern the extraction of
the scheduling trees, and the associated heuristics which could
help to limit the complexity of the extraction.

REFERENCES

[1] Aussaguès C. and David V.: A method and a technique to model and
ensure timeless in safety critical real-time systems. ICECCS’98, (1998)

[2] Baruah S.: Dynamic and static priority scheduling of recurring real-time
tasks. Real-time systems, Kluver Academic Publishers, 93–128, (2003)

[3] Choquet-Geniet A. and Grolleau E.: Minimal Schedulability Interval
for Real-Time Systems of Periodic Tasks with Offsets. Theoretical of
Computer Sciences, 310(10), 117–134, (2004)

[4] Choquet-Geniet A. and Pailler S.: Off-Line scheduling of real-time
applications with variable duration tasks. 7th DEDS, 373–378, (2004)

[5] Cucu L.: Probabilistic real-time schedulability analysis: from uniprocessor
to multiprocessor when the execution times are uncertain. Report, (2009)

[6] Dertouzos M.L. and Mok A.K.: Multiprocessor on-line scheduling of
hard-real time tasks. IEEE T.S.E, 15(12), 1497–1506, (1989)

[7] Fotsing C. and Geniet A. and Vidal-Naquet G.: A realistic model of real-
time systems for efficient scheduling. 33rd IEEE SEW, (2009)

[8] Fotsing C. and Geniet A. and Vidal-Naquet G.: Tree scheduling versus
sequential scheduling. CARS@EDCC, ACM, Valence, Espagne, (2010)

[9] Fotsing C.: Intégration d’éléments sémantiques dans l’analyse
d’ordonnançabilité des applications temps-réel. Phd Thesis, (2012)

[10] Grolleau E. and Choquet-Geniet A.: Off-line computation of real-time
schedules using Petri nets. Discrete Events Dynamic Systems (DEDS),
Kluwer Academic Publishers, vol12(3), 311–333, (2002)

[11] Liu C.L. and Layland J.W.: Scheduling algorithms for multiprogram-
ming in real-time environnement. J of the ACM, 20(1), 46–61 (1973)

[12] Lombardie M. and Milano M. and Ruggiero M. and Benini L.: Stochastic
allocation and scheduling for conditional task graphs in multi-processor
systems-on-chip. Journal of scheduling, 13(4), 315–345, (2010)

[13] Moalla M. and Pulou J. and Sifakis J.: Synchronized Petri nets: A Model
for the Description of Non-autonomous Systems. Proc. of the 7th MFCS,
374–383, LNCS 64 (1978)

[14] Santoshkumar I. and Manimaran G. and Siva C.: Static scheduling
of object-based real-time task with probabilistic conditional branches in
distributed systems. Parallel and Distributed Real-time, USA, (1998)

[15] Wilhelm R. and Engblom J. and Ermedahl A. and Holsti N. and Thesing
S. and Whalley D. and Bernat G. and Ferdinand C. and Heckmann R.
and Mitra T. and Mueller F. and Puaut I. and Puschner P. and Staschulat
J. and Stenstrom P.: Scheduling algorithms for multiprogramming in real-
time environnement. The worst case execution time problem–Overview
of methods and survey of tools. ACM, 7(3), (2008)

