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Abstract
We consider the complexity problems of scheduling hard real-time tasks subjected to cache-
related preemption delays upon uniprocessor platforms. Several schedulability analysis have
been proposed in the literature to explicitly take into account preemption delays due to loss
of cache affinity. But, these previous results do not study the complexity of taking scheduling
decisions while taking account preemption delays and only focus on classical real-time schedulers
(e.g., Rate Monotonic, Earliest Deadline First). In this paper, we focus on the computational
complexity of taking scheduling decisions to meet task deadlines while minimizing cache-related
preemption delay effects. We design two core cache-related scheduling problems that are the most
simple NP-hard problems to cover the most largest set of intractable real-world cache-related
scheduling problems. We establish several NP-hardness results in the preemptive and the non-
preemptive settings. These results prove that tighter timing analysis leads in practice to harder
real-time scheduling problems. These two core NP-hard scheduling problems are the following:
(i) scheduling with cache-related preemption delays and (ii) scheduling with information about
the cache state and the sequence of requested memory blocks for every task. We also prove for
the first problem that neither fixed-task nor fixed-job priority-based scheduling algorithms can
be optimal.
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Abstract—We consider the complexity problems of scheduling
hard real-time tasks subjected to cache-related preemption delays
upon uniprocessor platforms. Several schedulability analysis have
been proposed in the literature to explicitly take into account
preemption delays due to loss of cache affinity. But, these
previous results do not study the complexity of taking scheduling
decisions while taking account preemption delays and only focus
on classical real-time schedulers (e.g., Rate Monotonic, Earliest
Deadline First). In this paper, we focus on the computational
complexity of taking scheduling decisions to meet task deadlines
while minimizing cache-related preemption delay effects. We
design two core cache-related scheduling problems that are the
most simple NP-hard problems to cover the most largest set
of intractable real-world cache-related scheduling problems. We
establish several NP-hardness results in the preemptive and
the non-preemptive settings. These results prove that tighter
timing analysis leads in practice to harder real-time scheduling
problems. These two core NP-hard scheduling problems are the
following: (i) scheduling with cache-related preemption delays
and (ii) scheduling with information about the cache state and
the sequence of requested memory blocks for every task. We also
prove for the first problem that neither fixed-task nor fixed-job
priority-based scheduling algorithms can be optimal.

I. INTRODUCTION

Real-time systems are subjected to stringent timing con-
straints due to interactions with complex physical environ-
ments. A schedulability analysis is performed to validate that
all timing constraints will always be met at run-time. Such
schedulability analysis requires upper bounds for execution
times to be known (WCET - Worst-Case Execution Time).
In practice, WCETs are computed by a static analysis of
executable program codes, that is called the timing analysis.
Until recently, real-time system development life cycle copes
with these two fundamental analysis in a sequential way:
program WCETs are first computed by people handling timing
analysis and then subsequently used by people validating
systems according to a real-time scheduling algorithm.

Most real-time scheduling-theoretic results assume that all
timing penalties due to preemption overheads are integrated
into a "magic" WCET for every task [1]. On the one hand,

integrating task worst-case timing behaviors within the WCET
usually leads to an important overestimation of task execution
requirements. As a consequence, the real-time system design
must integrate over-dimensioned hardware features. On the
other hand, "magic" WCET leads to simpler scheduling prob-
lems since tasks are totally independent of each other. As a
direct consequence, the most popular scheduling policies do
not need any information about task execution requirements
for optimally assigning priorities to the tasks. For instance, it
is well-known that for uniprocessor platforms, Rate Monotonic
(RM) only uses periods to define task priorities, Deadline
Monotonic (DM) is based on relative deadlines and Earliest
Deadline First (EDF) on absolute deadlines.

Hereafter, we focus on the influence of cache memories in
hard real-time scheduling of task systems upon uniprocessor
platforms. Cache memories have been introduced in processor
chips to reduce the gap between processor and memory speeds.
Cache memories, as many other micro-architectural features,
increase the processor throughput. Taking explicitly into ac-
count cache memories when dealing with real-time schedul-
ing problems offers the opportunity to exploit tighter timing
analysis and as a consequence to reduce over-estimations
in the system design. But, cache-related preemption delays
introduce a circular dependence between timing analysis and
the real-time task scheduler. These two topics are usually
treated separately in academic work and in "real-world" system
design.

In this paper, we investigate the relationships between
the scheduling algorithm and cache-related preemption delay
estimations. We explicitly consider cache-related preemption
delays as a penalty that must be taken into account in the
scheduling model. Several schedulability tests have been de-
signed for that purpose, but to the best of our knowledge,
no paper investigates the impact of cache-related preemption
delays on the computational complexity of taking scheduling
decisions.

The computational complexity theory classifies problems
according to the resource (time, space,...) needed to solve
problem instances of arbitrary size. Complexity results help
designers in directing their effort toward those approaches that
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have the greatest likelihood of leading to useful algorithms
[2]. We shall use classical computational complexity classes:
NP-hard problems in the weak and in the strong senses.
NP-hard problems are optimization problems that cannot be
optimally solved in polynomial time. A problem is NP-hard
in the weak-sense if it can be solved in pseudo-polynomial
time. Whereas problems that are NP-hard in the strong-
sense cannot be solved in pseudo-polynomial time and thus
an optimal algorithm needs an exponential amount of time
to compute an optimal solution. Defining efficient heuristics
for such problems involves the determination of properties
of underlying combinatorial structure (e.g., graphs, integers,
boolean formulas,...) [3].

Our Methodology. We designed two core cache-related
scheduling problems that are the most simple NP-hard prob-
lems to cover the largest set of intractable cache-related real-
world scheduling problems. That is why these core problems
voluntary introduce quite restrictive and unrealistic assump-
tions in order to define the most simple NP-hard problems.
Both problems are related to the minimization of worst-case
cache effects for meeting hard real-time task deadlines in hard-
real time uniprocessor systems. Assumptions are introduced so
that core problems can be trivially reused for proving that a
wide range of "real-world" cache-related scheduling problems
are intractable. Precisely, core problems are trivially reducible
to more general problems since they define particular cases
of these general problems. Our two core problems and the
presented negative results are the following:
• Scheduling with Cache-Related Preemption Delays

(CRPD-aware scheduling): every preempted task incurs a
CRPD when it is resumed due to a loss of cache affinity.
For this problem, we show that neither fixed-job nor
fixed-task priority schemes can be optimal. Then, we
prove that this problem is NP-hard in the strong sense
for the preemptive case.

• Scheduling with cache state information (cache-aware
scheduling): the scheduler knows beforehand the se-
quence of requested memory blocks for every task
(computed during the timing analysis) and schedule the
tasks to optimize the cache utilization (i.e., minimize the
number of cache misses). We show in the preemptive
case that the problem is NP-hard in the strong sense. In
the non-preemptive case, we show that the problem is
NP-hard in the weak sense.

Organization. Section 2 deals with background information
and state-of-the-art. Section 3 presents our contributions on
the computational complexity of scheduling with CRPD con-
straints. Section 4 establishes the complexity of scheduling
with cache state information both for preemptive and non
preemptive task systems. Lastly, Section 5 concludes the paper
and indicates some future work.

II. BACKGROUND

A. Cache memory
Caches are used to bridge the gap between the processor

speed and the main memory access time. Caches considerably
improve performances but often at the expense of reduced

predictability. In order to reduce traffic, the main memory is
logically partitioned into a set of memory blocks of equal size.
We consider that each logical block is cached as a whole in a
cache line.

When the processor requires a memory block, two situations
can happen. In the first case, if the block is in the cache: it
is a hit, no access to the main memory is required and the
memory block is sent back to the processor within a short
delay. In the other case, it is a miss: the corresponding block
must be reloaded from the main memory within a large delay.
Hennessy and Patterson [4] describe typical values for various
caches: a Hit needs between 1 and 4 clock cycles (normally 1),
whereas a Miss penalty can be between 8 and 32 clock cycles.
Note that, in this paper, we assume that timing analysis are not
subjected to timing anomalies [5]. This means that for every
task requesting a memory block, a cache hit always leads to a
shorter execution time bound than a cache miss.

Cache replacement policies have been designed to optimize
cache utilization for a single input of block requests. Such
an assumption is realistic in most computer programming
paradigms. However, it is not anymore realistic for real-time
tasks since they are: (i) periodically released, and (ii) scheduled
according to a scheduling algorithm that is designed to meet
deadline constraints without any timing penalty due to cache
misses. Tasks are subjected to numerous preemptions and no
single sequence of block requests can be precisely known even
in the offline setting (e.g., static cache analysis [6]).

In order to refine the timing analysis, cache-related preemp-
tion delays (CRPD) on the execution time due to multitasking
may be estimated separately. In order to define tighter WCET
analyzer, a classical approach consists in computing the WCET
of a given task without any preemption and then computing
separately the preemption delays that the tasks may suffer
(i.e., CRPD). Cache-Related Preemption Delays are in practice
significant and cannot be neglected [7]. Bounding cache-
related preemption delays is a classical component of timing
analysis [6], [8].

B. State-of-the-art
This section presents known results when dealing with

cache-related preemption costs in real-time scheduling prob-
lems. We classify these results as follows:
• Preemption-aware scheduling. The starting motivation

is that arbitrary preemptions can introduce a significant
runtime overhead and may cause high fluctuations in
task execution times, thus degrading system predictabil-
ity [9]. Precisely, scheduling policies aim to control the
number of preemptions that the tasks may suffer. For
instance, schedulability improvement can be achieved by
limiting or deferring preemptions [10], [11], [12], [9].
However in all these approaches, scheduling decisions
are independent from the WCET, CRPD or any other
time cache-related parameters. These approaches define
a tradeoff between the fully preemptive and the non
preemptive scheduling model.

• CRPD-aware schedulability. Analysis and tools are
known to compute tight CRPD upper bounds for various
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τ1

τ2 γ γ γ

(a) EDF schedule of τ1(1, 3, 3) and τ1(7, 12, 12)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

τ1

τ2 γ γ

(b) Feasible schedule of τ1(1, 3, 3) and τ1(7, 12, 12)

Figure 1: Non optimality of task-level fixed and job-level fixed priority rules for scheduling problems with CRPD

cache systems (i.e., direct-mapped, set-associative, full
associative, and various replacement policies) [13]. From
the schedulability analysis point of view, the WCET
and CRPD computed by a timing analyzer are com-
bined to define schedulability tests used to validate real-
time systems [14], [15], [13]. Another approach has
been proposed by selecting off-line the best possible
preemption points in the program codes among a set
of potential preemption points (the worst-case context-
switch overhead is a priori known) [16]. The common
point of these approaches is that the scheduler takes
its scheduling decisions without any consideration for
CRPD timing requirements (i.e., they are not CRPD-
aware scheduler). But, CRPD are used at design stage
in schedulability tests.

• cache-aware scheduling. Only few papers deal with
influencing scheduling decisions by taking into account
cache state metrics. As indicated in [17], determining
how and when to promote jobs to improve cache per-
formance is not straightforward. These approaches are
usually based on analytical cache model and on-line
monitored counters such as cache miss-rate and concepts
such as stack distance profiles or cache footprints (i.e.,
working set size) [17]. These approaches have been
mainly studied in the context of soft real-time systems.

Preemption-aware scheduling will not be covered hereafter
since cache related preemption delays are not explicitly taken
into account in the scheduling model. In the remainder of this
paper, we provide computational complexity results to show
that CRPD-aware and cache-aware scheduling problems are
intractable (i.e., NP-hard).

III. CRPD-AWARE SCHEDULING

In this section, we focus on the complexity of taking
scheduling decisions with CRPD information. We first clearly
state the scheduling problem and then prove it to be NP-hard
in the strong sense.

A. Simplified CRPD and Task models
We investigate the simplest CRPD model in which the worst-

case CRPD is taken into account every time a preemption
occurs (for instance, the entire cache must be refilled at each
preemption, as in [18]). Hence, the execution requirement
Ci corresponds to the WCET when the task is executed alone
without preemption and a cache-related preemption delay γ is

paid by a task τi, 1 ≤ i ≤ n, every time it is resumed after a
preemption. The same penalty γ is taken into account for every
task at each preemption point (it may correspond, for instance,
to the worst-case preemption delay). As a consequence, the
NP-hardness result presented in this section is also valid
for any problem generalization integrating a precise CRPD
bound that may be different at each preemption point (e.g.,
scheduling models considered in [14], [19], [20], [21], [15],
[22], [13]).

We now formally state our first core scheduling problem and
then prove its intractability.

Definition 1: Scheduling with CRPD:
• INSTANCE: Finite set of n tasks τi(Ci, Di, Ti), 1 ≤

i ≤ n, with execution requirement Ci (WCET without
preemption cost estimated when τi is executed fully
non preemptively), a relative deadline Di, a period Ti
between two successive releases and a positive number
γ representing the worst-case Cache-Related Preemption
Delay incurred by τi at every resume point after a
preemption.

• QUESTION: Is there a uniprocessor preemptive sched-
ule meeting the deadlines?

Notice that this scheduling problem is not restricted to
CRPD scheduling problems. It is also applicable to scheduling
problems with context switch delays while preempting a job.
Such problems have been studied for instance in [23], [10] for
uniprocessor real-time systems, without any cache concerns.
The next result states that no fixed-job priority rule can be
optimal for scheduling tasks with CRPD (or equivalently with
context switch delays).

Theorem 1: Neither task-level fixed nor job-level priority
rules can be optimal for scheduling tasks with CRPD.

Proof: We provide a simple counter-example of that fact
with two tasks: τ1(1, 3, 3) and τ2(8− 2γ, 12, 12), with an
arbitrarily small positive number γ that will represent the
CRPD. Let us consider the EDF schedule presented in Figure 1a
(Without loss of generality, γ is set to 0.5 in Figure (1a)). In
the schedule of τ2, rectangles labelled by γ represent block
reload time delays due to loss of cache affinity that are paid
by the preempted task (i.e., cache misses). In practice block
reload times are paid when these blocks are referenced. To
simplify the graphical presentation in Figure 1, all these block
reload times associated to the CRPD are grouped together
and depicted just at the resume point. The EDF schedule in
Figure (1a) completes τ2 at time 4×C1 +C2 + 3γ = 12 + γ
and τ2 misses its deadline. The Figure (1b) depicts a feasible
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schedule in which τ2 suffers two preemptions by τ1 rather
than three in the EDF schedule (one γ less to account for). A
necessary condition to define a feasible schedule is: τ2 suffers
at most two preemptions. This can be achieved as follows:
τ2 has a higher priority than τ1 in the interval [3, 5) and τ1
has a higher priority than τ2 interval [5, 6) (otherwise, τ1 will
miss its second deadline). In this feasible schedule (1b), τ2
completes by time 3C1 + C2 + γ = 12; the forth job of τ1
completes by time 10, and thus meets its deadline at time 12.
Notice that in Figure (1b), the second preemption of τ2 can be
avoided by raising the priority of τ2 in the interval [9, 10.5)
and thus, ties cannot be broken arbitrarily using a deadline-
based scheduling rule. Clearly, fixed-job or fixed-task priority
schemes cannot define a feasible schedule in this case.

B. NP-hardness result

The hardness proof we apply is based on a transformation
from the well-known 3-Partition problem, that is recalled
hereafter. This problem is strongly NP-Complete meaning that
it cannot be solved in polynomial time or in pseudo-polynomial
time. Unless P=NP, the number of elementary operations
required to solve the 3-partition problem is exponential in
the size of the input instance [2]. Hence, assuming that such
elementary operations are performed with a fixed amount of
time, then the algorithm runs necessarily in exponential-time.
We next recall the definition of this classical decision problem;
then, we reduce it to our real-time scheduling problem meaning
that solving our problem is as hard as solving the 3-Partition
decision problem.

Definition 2: The 3-Partition decision problem (i.e., prob-
lem [SP15] in [2]):
• Instance: a set A of 3m elements, a bound B ∈ N , and

a size sj ∈ N for each j = 1..3m such that B/4 <
sj < B/2 and

∑
j=1..3m sj = mB.

• Question: Can A be partitioned into m disjoint sets
A1, A2, ..., Am such that, for 1 ≤ i ≤ m,

∑
j∈Ai

sj = B
(each Ai must therefore contain exactly three elements
from A)?

Theorem 2: Scheduling with CRPD is NP-hard in the strong
sense.

Proof: We transform from 3-Partition as follows:
• 3m tasks τ1, . . . , τ3m with the parameters:

Ci = si, Di = Ti = m(B + 1), 1 ≤ i ≤ 3m.
• Task τ3m+1 with:

C3m+1 = D3m+1 = 1 and Ti = (B + 1)

We now prove that there is a 3-Partition if, and only if,
there is a feasible schedule. By construction, the task set
utilization factor without any preemption penalty is exactly 1.
Hence, every preemption with a positive CRPD (or equivalently
a nonzero context switch delay) will necessarily lead to a
deadline failure.

(if part) Assume we have a 3-Partition A1, . . . , Am, then
schedule τ3m+1 as early as possible. The corresponding sched-
ule pattern is presented in Figure 2. All interval between every
τ3m+1 job’s execution (i.e., [(k−1)(B+1)+1, k(B+1)), k =
1..m) is of length B. Then, schedule any task corresponding to

Ak in interval [(k−1)(B+1)+1, k(B+1)), 1 ≤ k ≤ m. Since
there is a 3-Partition,

∑
j∈Ak

sj = B, for all k = 1 . . .m,
thus the corresponding jobs can be scheduled in the interval k
without any preemption. All jobs scheduled in these intervals
meet their deadlines at time m(B + 1) (i.e., at the end of the
last interval). Hence, no cache-related preemption delay will
be incurred and all deadlines are met.

(only if part) Assume we have a feasible schedule. Observe
that in any feasible schedule, the total workload in interval
[0,m(B + 1)) is exactly equal to m × C3m+1 +

∑3m
i=1 Ci =

m +
∑3m
i=1 si = m + mB = m(B + 1). Hence, there is no

preemption in any feasible schedule since otherwise at least
one cache-related preemption delay would be incurred by a
task and at least one deadline should be missed (e.g., see
the pattern of any feasible schedule presented in Figure 2).
Furthermore, due to the 3-Partition problem, execution require-
ments verify B/4 < Ci < B/2, 1 ≤ i ≤ 3m. Hence, exactly
3 tasks are executed in every interval. Hence, we define a
3-Partition with Ak by selecting the tasks executed in the
intervals [(k − 1)(B + 1) + 1, k(B + 1)), 1 ≤ k ≤ m.

As a consequence of the previous hardness result, it can be
easily proved that there is no universal scheduling algorithm
taking into account cache-related preemption delays, unless
P=NP. We recall that a scheduling algorithm is said to be
universal if the algorithm schedules every schedulable task
system [24].

Theorem 3: If there exists a universal scheduling algorithm
with Cache-Related Preemption Delay then P = NP.

Proof: To prove this theorem, we use a classical proof
approach, such as the one presented in [24]. Precisely, we show
that if such an algorithm exists, and if it takes a polynomial
amount of time (in the length of the input) to choose the next
processed job, then P = NP, because we can find a pseudo-
polynomial time algorithm to solve the 3-Partition problem.
We assume that there exists a scheduling algorithm for the
scheduling with CRPD problem. We denote this algorithm
A. Given an instance of the 3-Partition problem, we define
a set I of tasks using the same reduction technique as in the
proof of Theorem 2. The tasks are synchronously released.
Consequently, to check that every task does not miss its
deadline, we only need to study the interval [0,m(B + 1)].
Then, we use the scheduling algorithm A to define a schedule
and thus we are able to check that all deadlines are met. Since
the length of the schedule is m(B + 1) and A is assumed
to be a polynomial time algorithm, the whole algorithm for
checking deadline is at most pseudo-polynomial (i.e., it is
clearly performed in time proportional to mB). Using the
reduction techniques proposed in the proof of Theorem 2,
the instance I is schedulable by the algorithm A if, and
only if, there exists a partition of tasks τ1, . . . , τ3m into m
disjoint sets A1, A2, . . . , Am. Consequently, for each set Ai
(i ∈ {1, . . . ,m}), we have

∑
τj∈Ai

Cj = B. Thus, the solution
delivered by the algorithm A gives a solution to solve the 3-
Partition problem. To find this solution, we transform from the
3-Partition problem by simply constructing the set of tasks as
in the proof of Theorem 2 and then presenting this task system
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Figure 2: Pattern of feasible schedules in proof of Theorem 2

to the decision procedure based on Algorithm A.
Therefore, we found a pseudo-polynomial time algorithm to
solve the 3-Partition problem. However, 3-Partition problem
is NP-complete in the strong sense. As a consequence, if the
algorithm A exists then P = NP. This is a contradiction and
we can conclude that such an algorithm does not exist.

Next, we show that the scheduling problem is still hard even
if the tasks do not have periodic releases and if preemption
delays are equal to one processor cycle (i.e., one unit of time).

Theorem 4: Scheduling with CRPD is NP-hard in the weak
sense even if there is two distinct release dates and deadlines,
and preemption delay is one unit of time.

Proof: The Partition problem is NP-Complete in the
weak sense [2]: given m positive integers s1, . . . , sm with∑
i=1m si = 2B, decide if there exists a partition of I =

{1, . . . ,m} into two disjoint subsets I1 and I2 such that∑
k∈Ij sk = B, 1 ≤ j ≤ 2. Given an instance of Partition,

we define the following scheduling instance with m+ 1 jobs:
• m jobs Ji released at time ri = 0, a deadline equal to

di = 2B + 1 and processing times Ci = si, 1 ≤ i ≤ m;
• the job Jm+1 released at time rm+1 = B with a deadline

dm+1 = B + 1 and Cm+1 = 1.
The previous scheduling instance has two distinct release dates
and two distinct deadlines. Preemption delays are equal to one
unit of time.

(If part) Assume that we have a Partition (I1, I2), then a
feasible schedule is obtained by scheduling non preemptively
jobs of I1 in the interval [0, B) and jobs of I2 in the interval
[B + 1, 2B + 1). Both interval has length B and since∑
k∈Ij sk = B, 1 ≤ j ≤ 2, then all jobs meet their deadlines.
(Only if part) Assume that we have a feasible schedule. In

every feasible schedule:
• job Jm+1 is scheduled in the interval [B,B + 1)
• jobs are scheduled non preemptively without any idle

time since if one preemption is payed, then one job
necessarily misses its deadline due to the preemption
delay.

We define a feasible partition by selecting in I1 the jobs sched-
uled in [0, B) and in I2 the jobs scheduled in [B+1, 2B+1).
Both interval of length equal to be and the Partition constraint
is satisfied:

∑
k∈Ij sk = B, 1 ≤ j ≤ 2.

As stated in the previous theorem, the case of non recurring
jobs is also hard. Nevertheless, for a finite set of n jobs there
are special cases for which EDF creates no preemptions: when
all release dates are equal, when all deadlines are equal, when
all processing times are equal to one unit of time and when
release dates and deadlines are similarly ordered (i.e., ri ≤

rj ⇒ di ≤ dj , 1 ≤ i < j ≤ n). Thus, for all these special
cases, EDF is an optimal online scheduling algorithm for the
scheduling problem with CRPD.

IV. CACHE-AWARE SCHEDULING

In the previous section, the scheduling algorithm only uses
a global bound on CRPD and does not exploit neither the
sequences of memory blocks requested by the tasks nor
the cache states. In this section, we investigate cache-aware
scheduling policies, meaning that the scheduler knows the
sequence of memory block accesses of each task and then
uses this sequence to take scheduling decisions.

Every task code is modeled by a set of requested memory
blocks. These blocks may be either instructions or data. The
results presented hereafter also hold for separate instruction
caches and data caches. We first present assumptions about
cache and task models that we use to define a core scheduling
problem. The purpose of such a simplistic scheduling model
is to simplify as much as possible the proofs without loss of
generality. Using such simplified cache and task models, we
prove that the corresponding scheduling problems are NP-hard
both for preemptive and non-preemptive systems.

A. Simplified Cache and Task Model
Next, we list the simplifications we use to present our

computational complexity results. Since, we present a rather
simplified scheduling model, the complexity results can be
reused to prove the hardness of more general task and
cache systems in which all these assumptions are no longer
assumed.

Assumption 1: The cache memory consists of a single cache
line. A hit is performed at no cost and the miss penalty is equal
to a constant BRT (Block Reload Time).

By considering a cache memory with only one cache line,
Assumption 1 defines the simplest particular case that cov-
ers all cache types: direct-mapped, set-associative and fully-
associative caches. Precisely, it is always possible to define
input instances (i.e., cache memory accesses and mapping of
blocks in the main memory) that lead a set-associative cache as
well as a fully-associative cache to reload/evict the same blocks
as for a direct-mapped cache. Obviously, such an assumption
only focuses on corner cases that lead to worst-case cache
utilization. Hence, the presented NP-hardness results is valid
for all cache strategies (i.e., direct-mapped, fully-associative,
and set-associative). Furthermore, this assumption also exhibits
that the computational complexity of scheduling under cache
constraints is independent of the cache size.
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We also assume a basic task model in which every job has
a single execution path in its control flow graph. This is once
again the most simple task structure that can be considered.
If references of memory blocks are represented by letters in a
finite alphabet Σ, then the sequence Si of requested memory
blocks in every task τi can be modeled by a word of Σ∗.

Assumption 2: The Control Flow Graph of every job
consists of a single execution path with loop unrolling.

We only consider a finite set of jobs with individual dead-
lines. We only know for every job: its execution requirements
(i.e., WCET) assuming cache hit for every requested memory
block and the sequence of used memory blocks. Thus, the
instant at which a memory block is requested is not defined in
the task model. Finally, we make a third assumption to limit
preemptions just before specific points in the code.

Assumption 3: In the preemptive setting, job preemptions
can only occur just before requesting the next memory block.

Limiting preemption points in the code can only improve the
number of cache hits since the cache content can only change
at discrete points in time [9]. Next, we consider only non
recurring jobs subjected to individual deadlines. This choice is
only made to define the most simplified task model for which
cache-related scheduling problems are still NP-hard.

Definition 3: A job Ji is defined by Ji(Ci, Si, Di), where:
• Ci is the WCET assuming a cache hit for any reference.
• Si is a string from Σ∗, denoting the sequence of memory

blocks used during the job execution.
• Di is the relative deadline of the job.
Blocks referenced in Si of task τi may be instruction or data

blocks. For instruction cache, the intersection Si∩Sj represents
the shared code (e.g., shared functions, library code, operating
system) and for data cache it represents common data. For
data cache, sequence Si can be totally arbitrary, without any
pattern constraints. Whereas for instruction cache, blocks that
are referenced several times in sequences Si, 1 ≤ i ≤ n must
necessarily correspond to: function call or code within loops
inside a task. Without modifying Definition 3, the sequence Si
can represent requested blocks corresponding simultaneously
to instructions and data.

B. Preemptive scheduling
We can now state the simplified scheduling problem that

will be proved to be NP-hard.
Definition 4: The scheduling problem with cache memory

(SDCM ) is:
• INSTANCE: a finite alphabet Σ, a finite set of n jobs

Ji(Ci, D, Si) released at time 0, with execution require-
ment Ci and sequence of used memory blocks Si ∈ Σ∗,
a common deadline D and a positive number BRT .

• QUESTION: Is there a uniprocessor preemptive sched-
ule meeting the overall deadline D so that every hit in
the cache is performed without any penalty and every
miss has a penalty of BRT units of time?

Note that Ci is defined by the length of Si (i.e., Ci = |Si|, by
Assumption 2). Hence, this WCET assumes that all requested
memory blocks are hits in the cache.

Consider the following instance in which all blocks are
shared by all tasks (e.g., data cache): Σ = {a, b, c}, 3 jobs
with a block reload time BRT = 0.5 and a common deadline
D = 21:
• J1(5, 21, babcc)
• J2(6, 21, aaccbc)
• J3(5, 21, bacca)

Since,
∑
i Ci = 16 and there is exactly 16 memory block

requests, then any feasible schedule must experience at most
10 cache misses to meet the overall deadline D. Without loss
of generality, we assume in this example that every portion
of code requests one memory block for 1 unit of time. If
the corresponding block is in the cache there is no additional
timing penalty, but if it is a miss, the operation requires 0.5 unit
more due to the main memory access (i.e., BRT ). These values
have been chosen for the ease of graphical representation in
Figure 3. In Figure 3, the first two blocks that are requested by
J1 and J2 are not cached. As a consequence, their executions
incur a penalty of BRT units of time; but, when J3 first
requires Block b, it results in a cache hit, and thus no penalty is
incurred. Clearly, it is easy to define a schedule in which there
are only cache misses with a total length of 24 (i.e., BRT
has been incurred at every cache access). As a consequence,
at least one job will miss the deadline.

Theorem 5: Task-level and job-level fixed priority sched-
ulers are not optimal for the scheduling of tasks with cache
memory (i.e., SDCM problem).

Proof: We provide a simple counter-example for job-
level fixed priority schedulers. Consider a memory cache with
BRT = r, where r is an arbitrary positive number; two jobs
synchronously released and having the same relative deadline
equal to D = 2C + 4r: J1(C,D, aba) and J2(C,D, bab),
where C is an arbitrary positive number. A fixed-task priority
scheduler as well as a job-level fixed priority scheduler will
define a priority ordering before starting one of these two jobs.
Without loss of generality, assume that J1 obtains a higher
priority than J2. The sequence of memory blocks in the cache
will be: σ = ababab leading to 6 cache misses and no hit.
As a consequence, the schedule has a length of 2C + 6r. If
C = 3 and r = 0.5, the length of the schedule will be 9
units of time. The shortest schedule of J1 and J2 is obtained
using a full dynamic priority scheduler leading to the sequence
depicted in Figure 4, assuming once again C = 3 and r = 0.5.
Clearly, J1 has a higher priority than J2 in the interval [0, 3],
then at time 3, the priority of J2 is raised to a higher priority
than the one of J1, and finally reduced to a lower priority
at time 5.5. There are two cache hits and four cache misses
leading to a schedule of length 2C + 4r. This is the smallest
number of hits that can be achieved while scheduling these
two jobs. This counter example is also valid for fixed-task
priority schedulers since they are a particular case of job-level
fixed-priority schedulers.

To prove that the SDCM problem is strongly NP-hard, we
will make a reduction from Shortest Common Supersequence,
denoted SCS hereafter, that is known to be NP-hard in the
strong sense [25], [2]. We first recall basic definitions before
the problem statement.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

J1 b a b c c

J2 a a c c b c

J3 b a c c a

Cache Miss Miss Hit Miss Hit Hit Miss Hit Miss Miss Hit Hit Miss Miss Miss Hit

Figure 3: Schedule of 3 jobs using cache blocks a, b and c (C = 1, r = 0.5). A timing penalty is incurred at each cache miss.

0 1 2 3 4 5 6 7 8

J1 a b a

J2 b a b

Cache Miss Miss Hit Miss Hit Miss

Figure 4: Task-level fixed and job-level fixed priority schedulers are not optimal (C = 1, r = 0.5)

Algorithm 1: SCHED(J ,w)
input :

Jj(Cj , Sj), 1 ≤ j ≤ n ;
w : Shortest Common Supersequence of si’s;

kj := 1 ∀j = 1..n ;
foreach i := 1, . . . , |w| do

/* For each block in the Shortest Common Supersequence w */
foreach j := 1, . . . , n do

/* For each job in J */
while sj,kj = wi do

/* the job uses block wi until next preemption point */
DISPATCH(Jj); /* Execute Jj up to its next preemption point in time */
kj := kj + 1;

end
end

end

Given a finite sequence σ = s1, s2..., sm, we define a
subsequence σ′ of σ to be any sequence which consists of
σ with between 0 and m terms deleted. We write σ′ < σ.
Given a set R = {σ1, . . . , σp} of sequences, a Shortest
Common Supersequence of R, denoted SCS(R), is a shortest
sequence such that every σi, 1 ≤ i ≤ p is a subsequence
of SCS(R) (i.e., SCS(R) > σi, 1 ≤ i ≤ p). For instance
SCS({abbb, bab, bba}) = abbab.

Definition 5: The Shortest Common Supersequence (SCS)
is (i.e., problem [SR8] in [2]):

• INSTANCE: a finite alphabet Σ, a finite set R of strings
from Σ∗, and a positive integer K.

• QUESTION: Is there a string w ∈ Σ∗ with |w| ≤ K
such that each string x ∈ R is a subsequence of w,
i.e, w = w0x1w1x2 . . . xkwk where each wi ∈ Σ∗ and
x = x1x2 . . . xk?

The SCS problem is NP-Complete in the strong sense [25]
meaning that there does not exist a polynomial time algorithm
to solve it. Polynomial special cases are known if |R| = 2
or if all x ∈ R have |x| ≤ 2. Furthermore, it is also MAX-
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SNP hard [26], meaning that it is hard to approximate (i.e.,
there does not exist a polynomial time approximation scheme
- PTAS), unless P = NP.

Theorem 6: The SDCM scheduling problem is NP-hard in
the strong sense.

Proof: We reduce the SCS problem to the SDCM
scheduling problem. We define an instance of the SDCM
problem from an arbitrary instance of SCS as follows:
• The finite alphabet Σ is used to defined memory blocks

of the considered cache line.
• To every x ∈ R we define a job Ji with an execution

requirement Ci = |x| and a cache request sequence Si =
x (i.e., J(|x|, D, x), where D is the common deadline.

• The deadline D =
∑
x∈R |x|+K.BRT , where BRT is

assumed to be a positive number.
We now prove that there exists a solution to the SCS instance,
if and only if, there exists a solution to the SDCM instance.
The principle of the transformation is to establish that the
shortest common supersequence corresponds to the schedule
with the minimum number of memory accesses (i.e., cache
misses).

(if part) There exists a shortest common supersequence w
of length K or less. By construction, w is a shortest common
supersequence of jobs Si, 1 ≤ i ≤ n. We use w to schedule
jobs so that cache accesses exactly follow w. We describe
the simple scheduling algorithm. Let sj,k be the kth block
requested in Sj for Job Jj and let kj be the next requested
block in that sequence: starting from w1, we schedule every
job so that sj,kj = w1 for one unit of time in arbitrary order.
For these scheduled jobs, we increment indexes kj , 1 ≤ j ≤ n.
Then, the same scheduling rule is applied to every subsequent
wj , j ≤ |w|. Algorithm 1 presents the corresponding pseudo-
code. In this algorithm, at most one cold cache miss is paid for
every wi (i.e., exactly one if wi 6= wi−1, zero otherwise since
the block is already cached). The number of loaded blocks
in the cache line is thus bounded by K, the length of the
supersequence. As a consequence, the length of this schedule
is bounded by

∑n
i=1 Ci + K.BRT ≤ D and the common

deadline is met for all jobs.
(Only if part) Assume that we have a schedule meeting

the overall deadline D. Let σ be the corresponding sequence
of block requests in the considered cache line. Necessarily,∑n
i=1 Ci+K.BRT ≤ D, where K is defined by construction.
Without loss of generality, we assume that subsequences

in Σ composed of one single memory block (i.e., letters) are
sorted using a wrapping around technique on job indexes.
Such an ordering does not change the number of cache hits
or misses since reordered blocks are consecutive and identical
in σ. Notice that by construction σ contains all x ∈ R since
|σ| =

∑
x∈R |x|.

We start from the beginning of w0 = σ by repeating the
following step: at step i we aggregate all subsequent identical
blocks corresponding to different jobs for defining wi (i.e.,
only one block of a given job will be aggregate at every step).
We denote w, the sequence obtained from this process. Due to
the assumption on the ordering of identical blocks, aggregated
letters are always consecutive in the sequence.

Steps Sequences
0 w0 = abbaaaccbcccbacc
1 w1 = abbaaaccbcccbacc
2 w2 = abaaaccbcccbacc
3 w3 = abaccbcccbacc
4 w4 = abacbcccbacc
5 w5 = abacbcccbacc
6 w6 = abacbcbacc
7 w7 = abacbcbacc
8 w8 = abacbcbacc
9 w9 = abacbcbac

Table I: Construction of a common supersequence (w9)
starting from the cache request sequence (w0) associated to
an arbitrary schedule

The two next claims prove that w is a supersequence of at
most length K.

Claim 1: w is a supersequence. (By Induction) Initially, all
x ∈ R are subsequences of w0. Let wi, i ≥ 0 be the sequence
at a step verifying the induction hypothesis. Consider the
obtained sequence wi+1 computed from wi: since aggregated
letters come from different jobs by construction, then it follows
that all x ∈ R are subsequences of the sequence wi+1. Thus,
the sequence w obtained by this process is a supersequence of
all x ∈ R.

Claim 2: the length of w is at most K. The worst-case
number of cache misses is necessarily obtained when all sub-
sequent letters in w are distinct. Without loss of generality, we
consider hereafter this worst-case scenario. As a consequence,
|w| corresponds to the number of cache misses which is less
than or equal to K by construction, since the overall deadline
D =

∑
x∈R |x| + K.BRT is met. Hence, w is a common

sequence of length at most K, in the considered worst-case
scenario.

We illustrate the previous reduction by considering the
schedule presented in Figure 3 (i.e., Σ = {a, b, c}, 3 jobs:
J1(5, babcc), J2(6, aaccbc), J3(5, bacca)). The construction of
a common supersequence from a feasible schedule is illustrated
in Table I. At each step, subsequent identical blocks coming
from different jobs are aggregated.

C. Non Preemptive Scheduling
Single processor non preemptive scheduling (without cache

delays) is a well studied problem. Non preemptive scheduling
of a finite set of jobs with release dates and deadlines is already
known NP-hard (see also [2], problem [SS1]). If the jobs are
a priori known and (i) they are simultaneously available and
(ii) subjected to individual deadlines, then EDF (also known as
Jackson’s rule) is an universal scheduling algorithm.

We assume a simplified task model in which every task
accesses only one memory block. We still continue to assume,
as in the preemptive case, that the cache memory consists in
a single cache line containing one memory block.

Definition 6: The non preemptive scheduling problem with
cache memory (NPSCM ) is:
• INSTANCE: a finite alphabet Σ, a finite set of n jobs

Ji(Ci, Di, Si), with an execution requirement Ci, a
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deadline Di, the used memory blocks Si ∈ Σ, and a
positive number BRT (Block Reload Time).

• QUESTION: Is there a uniprocessor non preemptive
schedule meeting deadlines Di for every job so that
every hit in the cache is performed without any penalty
and every miss has a penalty of BRT units of times?

The hardness proof is based on a transformation from the
following sequencing problem that is known to be NP-hard in
the weak sense [27], [2]:

Definition 7: Sequencing with deadlines and setup times is
defined as follows (i.e., problem [SS6] in [2]):
• INSTANCE: a set C of "compilers", a set T of tasks, for

each t ∈ T a length l(t) ∈ Z+, a deadline d(t) ∈ Z+,
and a compiler k(t) ∈ C and for each c ∈ C a setup
time l(c) ∈ Z+.

• QUESTION: Is there a one processor schedule σ for
T that meets all task deadlines and that satisfies the
additional constraint that, whenever two tasks t and
t′ with σ(t) < σ(t′) are scheduled "consecutively"
(i.e., no other task t′′ has σ(t) < σ(t′′) < σ(t′))
and has different compilers (i.e., k(t) ≤ k(t′)), then
σ(t′) ≥ σ(t) + l(t) + l(k(t′))?

The next result states that the NPSCM scheduling problem
is NP -hard in the weak sense.

Theorem 7: The non preemptive scheduling problem with
cache memory (NPSCM) is NP-hard in the weak sense.

Proof: We transform from the problem [SS6] that is
NP-Complete in the weak sense, even if setup times are
identical [2]. Hereafter, we consider a constant setup time L
for all c ∈ C. Let us consider an arbitrary instance of [SS6]
to define an instance of our scheduling problem:
• Σ = C
• For every task t ∈ T , we define a job Ji with parameters

Ci = l(t), Di = d(t) and Si = k(t). Thus, we assume
that every job uses only one memory block mapped into
the cache line.

• BRT = L is the Block Reload Time.
Clearly, a task compiler corresponds to the memory block
used by a job to be cached in the cache line. The setup
time corresponds to the block reload time whenever a memory
block is not in the cache line. The block reload time in our
scheduling problem with cache memory corresponds exactly to
the setup time in the sequencing problem. As a consequence,
both problems are equivalent. Hence, the problem [SS6] has a
solution if, and only if, the corresponding scheduling problem
has a feasible solution.

The previous transformation only establishes that the non-
preemptive cache-aware scheduling problem is NP-hard in
the weak sense. The existence of a pseudo-polynomial time
algorithm cannot be excluded. Nevertheless, we think that as
in the preemptive case, this problem is harder but we currently
have no formal proof that it is NP-hard in the strong sense.

V. CONCLUSION

In this paper, we define two core cache-related scheduling
problems: (i) scheduling with cache-related preemption delays

and (ii) scheduling with cache information. We establish
several negative computational complexity results both for
preemptive and non-preemptive scheduling problems. We also
show that popular fixed-task and fixed-job priority rules cannot
be used to define an optimal CRPD-aware scheduler. As a
consequence, tighter timing analysis leads to harder scheduling
problems. In other words, taking explicitly into account cache
memories in scheduling problems cannot be achieved using
straightforward generalizations of well-known uniprocessor
scheduling-theoretic results.

Per se, performances of real time systems simultaneously
depend on WCET (optimized compiler, timing analyzer), cache
memory management (replacement policy, locking and parti-
tioning techniques), the schedulability analysis used to validate
the system, and last but not least, the scheduler that takes
scheduling decisions at run-time. Overestimations are intro-
duced by all these techniques in order to design predictable
systems. In order to reduce these underlying overdimensioning
effects, we believe that improvement in the design of real-
time systems can only be achieved by tackling these problems
simultaneously.

Future work are to study which tradeoff must be made in
order to efficiently coping with a cache memory in real-time
systems. Typical questions are: (i) Which kind of system model
is required: fine-grained or coarse scheduling models? (ii) How
to jointly handle task memory accesses (e.g., replacement pol-
icy, locking and partitioning techniques) and task scheduling
(e.g., controlling preemptions according to the cache state and
the schedulability issue)?
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