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Input-to-State Stability of Time-Delay Systems: A Link
With Exponential Stability

Nima Yeganefar, Pierdomenico Pepe, and Michel Dambrine

Abstract—The main contribution of this technical note is to establish
a link between the exponential stability of an unforced system and the
input-to-state stability (ISS) via the Liapunov–Krasovskii methodology. It
is proved that a system which is (globally, locally) exponentially stable in
the unforced case is (globally, locally) input-to-state stable when it is forced
by a measurable and locally essentially bounded input, provided that the
functional describing the dynamics in the unforced case is (globally, on
bounded sets) Lipschitz and the functional describing the dynamics in the
forced case satisfies a Lipschitz-like hypothesis with respect to the input.
Moreover, a new feedback control law is provided for delay-free lineariz-
able and stabilizable time-delay systems, whose dynamics is described by
locally Lipschitz functionals, by which the closed-loop system is ISS with
respect to disturbances adding to the control law, a typical problem due
to actuator errors.

Index Terms—Exponential stability, input-to-state stability (ISS), Lia-
punov–Krasovskii theorem, nonlinear time-delay systems.

I. INTRODUCTION

For nondelayed systems, the input-to-state stability (ISS) property
has been widely studied and its efficiency has been proved in practical
applications such as networked control and robot manipulators (see, for
a survey, [1]). The main point here is to focus on the robustness problem
of nonlinear perturbed systems with possible large perturbations. ISS
implies not only that the unperturbed system is asymptotically stable
in the Liapunov sense but also that its behavior remains bounded when
its inputs (e.g., exogenous perturbations) are bounded. This is due to
the contribution of Sontag in [2], who was the first to harmonize the
Liapunov state and the input–output approaches.

Recently, some authors have attempted to address the lack of re-
sults regarding time-delay systems. Until 2003, only the work [3] by
Teel had been devoted to the ISS property. In Teel’s paper, a defini-
tion of the ISS for time-delay systems was given and sufficient con-
ditions were stated using a Razumikhin-type theorem. In [4], Pepe
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and Jiang extended the definition of the ISS–Liapunov function to Li-
apunov–Krasovskii functional and presented a sufficient condition to
guarantee the ISS property. Also, a recent paper by Liberzon [5] is de-
voted to the quantized approach and ISS using Teel’s propositions.

The interest of the scientific community in the ISS property for
time-delay systems is now rapidly increasing. In this context, we
hope that this work will open even more perspectives with regard
to this topic. Specifically, in this technical note, we will exhibit a
link between exponential stability and the ISS property. Exponential
stability has proved its efficiency in networked control. However, the
influence of disturbances on the solutions behavior have to be more
deeply analyzed from both a qualitative and a quantitative point of
view. For networked control systems, the first work in this direction
is [6] relying on Teel’s results, which may be somewhat conservative
due to the use of Razumikhin–Liapunov functions. Characterization
of ISS for nonlinear time-delay systems is still a difficult task despite
recent results [4], [7], [8].

We show in this technical note a link between ISS and exponential
stability for a large class of systems. It is proved that a system which is
(globally, locally) exponentially stable in the unforced case is (globally,
locally) input-to-state stable when it is forced by a measurable and lo-
cally essentially bounded input, provided that the functional describing
the dynamics in the unforced case is (globally, on bounded sets) Lip-
schitz and the functional describing the dynamics in the forced case
satisfies a Lipschitz-like hypothesis with respect to the input. More-
over, a new feedback control law is provided for delay-free linearizable
and stabilizable time-delay systems, whose dynamics is described by
locally Lipschitz functionals, by which the closed-loop system is ISS
with respect to disturbances adding to the control law, a typical problem
due to actuator errors.

Notations: The symbol j � j stands for the Euclidean norm of a real
vector or the induced Euclidean norm of a matrix. A measurable func-
tion u : [0;+1) ! Rm, m positive integer, is said to be essen-
tially bounded if ess supt�0 ju(t)j < +1, where ess supt�0 ju(t)j =
inffa 2 [0;+1] : �(ft 2 [0;+1) : ju(t)j > ag) = 0g, � de-
noting the Lebesgue measure. The symbol k � k1 denotes the essen-
tial supremum norm, that is, for a measurable and essentially bounded
function u : [0;+1) ! Rm, kuk1 = ess supt�0 ju(t)j. For given
times 0 � T1 < T2, we indicate with u[T ;T ) : [0;+1) ! Rm

the function given by u[T ;T )(t) = u(t) for all t 2 [T1; T2) and = 0
elsewhere. An input u is said to be locally essentially bounded if, for
any T > 0, u[0;T) is essentially bounded. A function w : [0; b) ! R,
0 < b � +1, is said to be locally absolutely continuous if it is ab-
solutely continuous in any interval [0; c], 0 < c < b. A continuous
function ! : [0;1) ! [0;1) is of class K if it is strictly increasing
and !(0) = 0 is of class K1 if it is of class K and is unbounded. A
function � : [0;1)2 ! [0;1) is of class KL if for each fixed t the
function s ! �(s; t) is of class K and for each fixed s the function
t ! �(s; t) is nonincreasing and goes to zero as t ! 1. For a given
� > 0, C denotes the vector space of continuous functions mapping the
interval [��; 0] into Rn and for ' 2 C, k'k

c
= sup�����0 j'(�)j.

For a given positive real H > 0, let CH be the subset of C consisting
of elements ' whose norm k'k

c
is bounded above by H . With the

symbol k � ka (see [4]), we indicate any seminorm in C, such that, for
some positive reals a and �a, the following inequalities hold:

aj�(0)j � k�ka � �a k�kc 8 � 2 C: (1)

For any continuous function x(s) defined on �� � s < A, A > 0,
and any fixed t, 0 � t < A, the standard symbol xt will denote the
element of C defined by xt(�) = x(t+ �), �� � � � 0.
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II. PRELIMINARIES

A. Exponential Stability of Unforced Systems

We will consider the exponential stability problem for the following
equation in Rn with bounded delay � > 0:

_x(t) = f(xt); t � 0

x0 =  
(2)

where  2 C and f : C ! Rn is continuous and Lipschitz on bounded
sets f(0) = 0.

In this technical , we will denote by x(t;  ) (a vector of Rn) the
solution at time t of system (2) with the initial condition  at 0. We
will, by convenient abuse of notation, consider xt( ) (a function of
C) also a solution of (2). Observe that x0( ) =  . We recall here the
definition of exponential stability in the case of time-delay systems.

Definition 2.1: The solution x(t) = 0 of (2) is exponentially stable
if there exist positive reals H , A, and B such that for every  2 CH
the solution xt( ) of (2) exists 8 t � 0 and furthermore satisfies

kxt( )kc � Ae
�Bt k kc : (3)

Definition 2.2: The solution x(t) = 0 of (2) is globally exponen-
tially stable if there exist positive reals A and B such that for every
 2 C the solution xt( ) of (2) exists 8 t � 0 and furthermore satisfies

kxt( )kc � Ae
�Bt k kc : (4)

The next two theorems (here reported for the time-invariant case),
proved in [9, Lemma 33.1], will play an important role in the proof of
our main theorems in Section III.

Theorem 2.3: If system (2) is exponentially stable (with initial con-
ditions in CH , 0 < H < +1), then there exist a continuous functional
V (') defined on C(H=A) and positive constantsCi, i = 1; 2; 3; 4, such
that the following conditions hold 8 '; � 2 C(H=A):

C1 k'kc �V (') � C2 k'kc (5)

lim sup
h!0

V (xh('))� V (')

h
��C3 k'kc (6)

jV (')� V (�)j �C4 k'� �kc : (7)

Theorem 2.4: If system (2) is globally exponentially stable, then
there exists a continuous functional V (') defined on C, which satisfies
the following conditions in C:

C1 k'kc �V (') � C2 k'kc (8)

lim sup
h!0

V (xh('))� V (')

h
��C3 k'kc (9)

where Ci, i = 1; 2; 3, are some positive constants. Moreover, if the
functional f is globally Lipschitz, then there exists a positive real C4,
such that the following inequality holds 8 '; � 2 C:

jV (')� V (�)j � C4 k'� �kc : (10)

Remark 1: In Theorems 2.3 and 2.4, the coefficients Ci,
i = 1; 2; 3; 4, depend on the positive reals A and B and on the
Lipschitz coefficient of the functional f in CH (or in C) and can be
easily computed (see [9]).

B. Input-to-State Stability

As previously stated, a definition of ISS for time-delay systems has
been given in [3] and a useful characterization has been presented in
[4]. For the reader’s convenience, and to make our work self-contained,
we report here the definition of ISS for time-delay systems and its
characterization with an ISS Liapunov–Krasovskii functional (see [2]
and [4]).

Consider the system

_x(t) = f(xt; u(t)); t � 0

x0 =  
(11)

where f is a continuous functional defined on C � Rm, Lipschitz on
bounded sets f(0; 0) = 0. The input u is a measurable and locally
essentially bounded function of t for all t � 0. Consider also the un-
forced system

_x(t) = f(xt; 0); t � 0

x0 =  :
(12)

Definition 2.5: System (11) is said to be locally input-to-state
stable if there exist two positive reals r and ru, a class KL function
�, and a class K function , such that, 8  2 Cr and 8 u such
that ess supt�0 ju(t)j < ru, the solution exists for all t � 0 and
furthermore satisfies

jx(t;  )j � �(k kc ; t) + (ku[0;t)k1): (13)

Definition 2.6: System (11) is said to be input-to-state stable if there
exist a classKL function � and a classK function , such that, for any
initial state  and any locally essentially bounded input u, the solution
xt( ) exists for all t � 0 and furthermore satisfies

jx(t;  )j � �(k kc ; t) + (ku[0;t)k1): (14)

In the following, the continuity of a functional V : C ! R+ is
intended with respect to the supremum norm.

Given a continuous functional V : C ! R+, the upper-right hand
Dini derivative (as proposed in [10] and used in [4] and [11] and, in a
generalized version [12]) is given by

D
+
V ('; v) = lim sup

h!0

1

h
(V ('h;v)� V (')) (15)

where 'h;v 2 C is given by

'h;v(s) =
'(s+ h); s 2 [��;�h)

'(0) + (s+ h)f('; v); s 2 [�h; 0].
(16)

It is proved in [13] that, under Caratheódory conditions, if the func-
tional V is locally Lipschitz, then, for any ' 2 C, almost everywhere
in t

D
+
V (xt('); u(t)) = lim sup

h!0

V (xt+h('))� V (xt('))

h
: (17)

Moreover, it is proved in [14] that the problem of the absolute con-
tinuity of the function t! V (xt(')) (see the hypothesis Hp1 in [4])
is overcome if V is locally Lipschitz.

Taking into account the above two facts, a main contribution in [4]
is here reported by the following definitions and theorems.

Definition 2.7: A locally Lipschitz continuous functional V : C !
R+ is a local ISS Liapunov–Krasovskii functional for system (11) if
there exist two positive reals k1 and k2, K1-functions a and b, and
K-functions � and �, such that,8 ' 2 Ck , 8 u with juj < k2:

1) a(j'(0)j) � V (') � b(k'ka);
2) D+V ('; u) � ��(k'ka); 8 k'ka � �(juj).
Theorem 2.8: If system (11) admits a local ISS Liapunov-

Krasovskii functional, then it is locally ISS with  = a�1 � b � �.
Definition 2.9: A locally Lipschitz continuous functional V : C !

R+ is an ISS Liapunov-Krasovskii functional for system (11) if there
exist K1-functions a and b and K-functions � and � such that:

1) a(j'(0)j) � V (') � b(k'ka);
2) D+V ('; u) � ��(k'ka); 8 k'ka � �(juj).
Theorem 2.10: If system (11) admits an ISS Liapunov–Krasovskii

functional, then it is ISS with  = a�1 � b � �.
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III. MAIN RESULTS

A. Links Between ISS and Exponential Stability

Our main results can now be stated as follows.
Theorem 3.1: Let there exist positive reals H , D, and ` and a non-

negative real p < 1, such that:
1) the unforced system (12) is exponentially stable (initial conditions

in CH );
2) for all ' 2 CH , for all u 2 Rm with juj < D, the following

inequality holds:

jf('; u)� f('; 0)j � `max k'kpc ; 1 juj: (18)

Then, the perturbed system (11) is locally input-to-state stable, with r
and ru in Definition 2.5 being any positive reals satisfying the inequal-
ities

r <
H

A
ru < D (19)

max
2C4`ru

C3
;

2C4`ru

C3

(1=1�p)
C2

C1
+
C2

C1
r <

H

A
(20)

Ci, i = 1; 2; 3; 4, being the positive constants given in Theorem 2.3,
and A being the constant in (3) for the unforced system (12).

Remark 2: A large class of systems verifies the condition (18). For
instance, systems _x(t) = f(xt)+g(xt)u(t), with any f and jg(')j �
`max k'kpc ; 1 , verify the condition (18). The termmax k'kpc ; 1
may be substituted by a positive constant (included in `), but this would
reduce, in general, the region where the ISS holds [see inequality (20)].

Theorem 3.2: Let system (12) be globally exponentially stable. Let
there exist positive reals L, ` and a nonnegative real p < 1 such that:

1) 8 '1; '2 2 C, the following inequality holds:

jf('1; 0)� f('2; 0)j � L k'1 � '2kc ; (21)

2) 8 ' 2 C, 8 u 2 Rm, the following inequality holds:

jf('; u)� f('; 0)j � `max k'kpc ; 1 juj: (22)

Then, the perturbed system (11) is input-to-state stable.

B. An Input-to-State Stabilizing Feedback

In this section, we consider nonlinear systems

_x(t) = f(xt) + g(xt)(u(t) + d(t)); t � 0

x0 =  ;
(23)

where f and g are locally Lipschitz continuous functionals defined on
C, f(0) = 0, u(t) 2 Rm is the control input, and d(t) 2 Rm is a mea-
surable and locally essentially bounded disturbance. In recent literature
(see [15]–[17], and [18]), many results concerning the input–output lin-
earization and the elementary theory of nonlinear feedback for time-
delay systems have been achieved. The following theorem provides
an ISS feedback control law (see [2]) for the class of time-delay sys-
tems, which, by a suitable change of coordinates, state feedback con-
trol law, and in the case of no disturbance, can be transformed into a
delay-free linear asymptotically stable system. Standard change of co-
ordinates and feedback control laws, by which the closed-loop system,
with no disturbance, becomes linear and delay-free, are considered.
Such change of coordinates and feedback control laws exist for a sig-
nificant class of time-delay systems.

Theorem 3.3: Consider system (23). Let there exist a diffeomor-
phism � : Rn ! Rn (the inverse is denoted with ��1), a locally
Lipschitz functional k : C ! C, and a Hurwitz matrix F 2 Rn�n

such that:

i) there exist suitable functions L1, L2, of class K1, such that the
inequalities holds

j�(z)j � L1(jzj) j��1(z)j � L2(jzj) 8 z 2 Rn; (24)

ii) with the change of coordinates z = �(x), system (23) is trans-
formed into

_z(t) = �f(zt) + �g(zt)(u(t) + d(t)); t � 0

z0(�) = �( (�)); � 2 [��; 0];
(25)

with �f : C ! Rn and �g : C ! Rn�m locally Lipschitz functionals,
such that, 8 ' 2 C, the following equality holds:

�f(') + �g(')k(') = F'(0): (26)

Let 	 : C ! C be defined as

	(')(�) = �('(�)); � 2 [��; 0]; ' 2 C: (27)

Consider the feedback control law

u(t) = k(	(xt))� �gT (	(xt))Q�(x(t))(�(x(t))
T
P�(x(t)) (28)

where P 2 Rn�n is any symmetric, positive-definite matrix and Q 2
Rn�n is the symmetric, positive-definite matrix solution of F TQ +
QF = �P .

Then, the closed-loop system (23)–(28) is input-to-state stable with
respect to the measurable, locally essentially bounded disturbance d(t).

Remark 3: Note that in this case the functionals g and �g do not have
to satisfy the condition (18) as reported in Remark 2. As is well known,
given the symmetric, positive-definite matrix P , the matrix Q is equal
to +1

0
eF tPeFtdt.

Remark 4: If the change of coordinates and the feedback control law
satisfying the hypotheses of Theorem 3.3 both exist in a neighborhood
of the origin and in CH for some positive realH , respectively, then, by
the feedback control law (28), local ISS with respect to the disturbance
is achieved. A local change of coordinates � and a local feedback con-
trol k exist, for instance, for the class of nonlinear time-delay systems
described by the equations (see [19])

_x(t) = f(x(t)) + g(x(t))[p1(xt) + p2(xt)(u(t) + d(t))] (29)

where the functions f and g are smooth, f(0) = 0, and such as to
admit full vector relative degree at 0 with respect to some smooth
output function h : Rn ! Rm, h(0) = 0; p1 : C ! Rm and
p2 : C ! Rm�m are locally Lipschitz functionals with p1(0) = 0,
det(p2(�)) 6= 0 8 � 2 CH , H positive real. Note that setting u(t) =
(p2(xt))

�1(�p1(xt)+v(t)) and considering v(t) as a new input does
not yield system (29) to be a finite-dimensional one, because of the
standing term p2(xt)d(t), which involves time delays. For instance, the
classical Lotka–Volterra prey–predator system is described by equa-
tions (choosing the unknown variables as deviations from equilibrium)
in the form (29) (see [20] and references therein). In this technical note,
we have not considered maps from C to Rn for the unknown variables
in system (23), that is, z(t) = �(xt) (see [17] and [18]), which may
yield linearizing feedback control laws depending on both variables
z(t) and xt, as well as internal dynamics described by coupled delay
differential and difference equations. With such linearizing feedback
control laws, further investigations concerning the ISS are necessary
and will be a topic of future work.

C. Proof of Theorem 3.1

We view system (11) as a perturbation of the unforced system (12).
The main idea of the proof will be to show that there exists a local
ISS Liapunov–Krasovskii functional for system (11); Theorem 2.8 will
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then insure that our system is locally ISS. Moreover, the functional we
are looking for is the same as the one for the unforced system (using
Theorem 2.3). The details of the proof are reported below.

Proof: The converse Liapunov–Krasovskii Theorem 2.3 shows
that the unforced system (12) has a Liapunov–Krasovskii functional
V (') that satisfies, in C(H=A), the inequalities (5)–(7). Note that V is
Lipschitz in C(H=A). Let k'kc < (H=A) and juj < D. Computing the
upper right-hand side Dini derivative of the functional V as in (15), we
get

D+V ('; u)

= lim sup
h!0

1

h
(V ('h;u)� V ('))

= lim sup
h!0

1

h
(V ('h;u)� V ('h;0)� V (') + V ('h;0))

� D+V ('; 0) + lim sup
h!0

1

h
(V ('h;u)� V ('h;0))

� �C3 k'kc + lim sup
h!0

1

h
(V ('h;u)� V ('h;0)):

Taking into account condition (18) on f , the following inequalities hold
for sufficiently small h:

jV ('h;u)� V ('h;0)j

� C4 k'h;u � 'h;0kc

= C4 sup
s2[��;0]

j'h;u(s)� 'h;0(s)j

= C4 sup
s2[�h;0]

js+ hjjf('; u)� f('; 0)j

� C4jhj`max k'kpc ; 1 juj:

Let ! : R+ ! R+ be the class K1 function defined as
!(s) = �minfs; s1�pg, where 0 < � < (C3=C4`). Then, if
k'kc � !�1(juj), the following inequalities hold:

D+V ('; u) � �C3 k'kc + C4`� k'kc � �� k'kc (30)

where � = C3 � C4`� > 0. Let us choose � = (C3=2C4`), so
that � = C3=2. Hence, the conditions of Theorem 2.8 are satisfied
using the norm k�kc as a k � ka seminorm, a(s) = C1s, b(s) = C2s,
�(s) = �s, and �(s) = !�1(s). We can conclude that system (11)
is locally input-to-state stable and the inequality (13) holds, provided
that the initial conditions satisfy k'kc < r and the input u(t) satisfies
ess supt�0 ju(t)j < ru, where r and ru are suitable positive reals.
From Theorem 2.8, it follows that the function  is given by

(s) =
C2

C1
max

2C4`s

C3
;

2C4`s

C3

(1=1�p)

: (31)

Furthermore, from (30) and (5), it follows that the function � in in-
equality (13) is given by

�(s; t) = s
C2

C1
exp �

C3

2
t : (32)

The positive reals r < (H=A) and ru < D can be computed by im-
posing

�(r; 0) + (ru) <
H

A
(33)

which, from (31) and (32), returns to (20).
The proof of Theorem 3.2 is similar and will not be detailed here.

D. Proof of Theorem 3.3

Proof: In the z coordinates, the feedback control law (28) is given
by

u(t) = k(zt)� �gT (zt)Qz(t)z(t)
TPz(t): (34)

Let us apply Theorem 2.10 to the closed-loop system (in the new co-
ordinates) (25)–(34), taking into account (26). Let us consider the Li-
apunov–Krasovskii functional V (') = 'T (0)Q'(0). The following
inequalities hold for jdj � '(0)TP'(0):

D+V ('; d)

= 'T (0)(QF + F TQ)'(0)

� 2'T (0)Q�g(')�gT (')Q'(0)'T (0)P'(0) + 2'T (0)Q�g(')d

� �'T (0)P'(0)� 2 gT (')Q'(0)
2

'T (0)P'(0)

+ 2 'T (0)Q�g(') jdj1=2 jdj1=2

� �'T (0)P'(0)� 2 gT (')Q'(0)
2

'T (0)P'(0)

+ 2 gT (')Q'(0)
2

'T (0)P'(0) +
1

2
'T (0)P'(0)

� �
1

2
'T (0)P'(0):

Therefore, by Theorem 2.10, it follows that the closed-loop system (in
the new coordinates) (25)–(34) is input-to-state stable with respect to
measurable and locally essentially bounded disturbancesd(t). Note that
in this case the Euclidean norm j'(0)j is used as a k'ka seminorm.

So, there exist a function �z of class KL and a function z of class
K such that the following inequality holds 8 t � 0:

jz(t)j � �z(kz0k; t) + z(kd[0;t)k1): (35)

From (35), taking into account (24), it follows that

jx(t)j = j��1(z(t))j

�L2 �z(k	(x0)k1; t) + z(kd[0;t)k1)

�L2(2�z(L1(kx0k1); t)) + L2(2z(kd[0;t)k1)):

Because the functions (s; t)! L2(2�z(L1(s); t)), s! L2(2z(s)),
(s; t) 2 R+ � R+, are of class KL and of class K respectively, the
ISS of the closed-loop system (23)–(28) is proved.

IV. EXAMPLES

Theorems 3.1, 3.2, and 3.3 have nice applications in the nonlinear
feedback control of time-delay systems when a disturbance adds to the
control law, which usually happens because of actuator errors.

As an application of Theorem 3.2, consider the following time-delay
system:

_x1(t) = x2(t) +
0

�1
0:1�x1(t+ �)d�

_x2(t) = x1(t� 1)x2(t� 1)

+ 1 + jx1(t� 1)j(1=2) (u(t) + d(t))

(36)

where u is the control input and d is an unknown measurable, locally
essentially bounded disturbance. The following control law:

u(t) =
�x1(t� 1)x2(t� 1)� 2x1 � 3x2

1 + jx1(t� 1)j1=2

is such that the closed-loop system becomes

_x1(t) = x2(t) +
0

�1
0:1�x1(t+ �)d�

_x2(t) = �2x1(t)� 3x2(t) + 1 + jx1(t� 1)j(1=2) d(t):
(37)

The closed-loop system (37) with zero disturbance (d(t) � 0) is
a globally exponentially stable linear time-delay system (it can be



1530 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 6, JULY 2008

checked by [21, Proposition 5.15, pp. 171]). For this example, the
condition (22) is respected. The following inequality holds, for any
' = ['1 '2 ]

T 2 C (with n = 2):

jf('; d)� f('; 0)j = 1 + j'1(�1)j
(1=2) jdj (38)

jdj+ j'1(�1)j
(1=2) jdj � 2max k'k(1=2)c ; 1 jdj: (39)

Therefore, Theorem 3.2 allows us to say that the closed-loop system
(37) has the important ISS property with respect to the disturbance d(t).

As an application of Theorem 3.3, consider the following time-delay
system:

_x1(t) = x21(t) + x2(t)

_x2(t) = x1(t� � )x2(t� � )

+(1 + x21(t)x
2
2(t� � ))(u(t) + d(t))

(40)

where u is the control input and d is an unknown measurable, locally
essentially bounded disturbance. Consider the change of coordinates
[17], [18] z = [ z1 z2 ]

T = �(x) = [ x1 x21 + x2 ]
T . Then, 	 is

defined as, for ' = ['1 '2 ]
T 2 C, 	(')(�) =

'1(�)

'2
1(�) + '2(�)

,

� 2 [��; 0]: By this change of coordinates, system (4) is transformed
into system (25) with �f and �g given by

�f(') =
'2(0)

2'1(0)'2(0)+ '1(��)('2(��)� '2
1(��))

�g(') =
0

1 + '2
1(0)('2(��)� '2

1(��))
2 :

Let k : C ! C be defined as [17], [18]

k(') =
�2'1(0)'2(0)� '1(��)('2(��)� '2

1(�))

1 + '2
1(0)('2(��)� '2

1(��))
2

+
r1'1 + r2'2

1 + '2
1(0)('2(��)� '2

1(��))
2

with r1 and r2 2 R. By this choice of k, it follows that �f(') +

�g(')k(') = F'(0), where F =
0 1

r1 r2
. By an easy choice of

r1 and r2, the matrix F is Hurwitz.
By Theorem 3.3, the following control law:

u(t) = k(	(xt))� �g(	(xt))Q�(x(t))�(x(t))T�(x(t)) (41)

where � and 	 are defined above, Q is the symmetric positive matrix
satisfying

0 r1

1 r2
Q+Q

0 1

r1 r2
= �I

and I is the identity matrix in R2�2, is such that the closed-loop
system (40) and (41) is (globally) ISS with respect to the disturbance
d(t). Note that the functionals g and �g are (only) locally Lipschitz and
that system (40) rewritten in the new coordinates, with u(t) = k(zt)
and zero disturbance (d(t) � 0) is a globally exponentially stable
(linear) delay-free system. However, if the disturbance is present,
the time-delay closed-loop system in the new coordinates is not ISS.
Actually, any constant disturbance may cause the variables z(t) (and,
consequently, the variables x(t)) to go to 1 for suitable initial condi-
tions. Note also that the condition (22) is not verified for system (40),
rewritten in the new coordinates, in closed loop with u(t) = k(zt).
For this, just take into account remark (2) and that

j�g(')dj = j1 + '
2
1(0)('2(��)� '

2
1(��))

2jjdj: (42)

By choosing, for instance, all ' =
'1

0
with '1 a constant function,

one obtains j�g(')dj � k'k6c jdj. Therefore, a positive real l and a
nonnegative real p < 1, such that j�g(')dj � l k'kpc jdj holds for all
above ' with the constant value greater than 1, do not exist.

V. CONCLUSION

The ISS theory, recently being adapted to time-delay systems, is one
of the best tools for analysis and control of nonlinear systems. In this
technical note, we establish a connection between ISS and exponential
stability of time-delay systems when the chosen functional verifies a
Lipschitz-like hypothesis with respect to the input. Roughly speaking,
it is proved that a system which is exponentially stable in the unforced
case is input-to-state stable when it is forced by a bounded input. A
second task has also been fulfilled: a new feedback control law is pro-
vided for delay-free linearizable and stabilizable time-delay systems.
With the given feedback law, the closed-loop system is ISS with re-
spect to disturbances adding to the control law.

These results are important for several main reasons. On the one
hand, one has a new opportunity to check the ISS property of delayed
systems. The given Lipschitz-like hypothesis allows us to consider a
large class of time-delay systems and it has to be said that, even in the
nondelayed case, the only existing result linking ISS and exponential
stability is for systems which are globally Lipschitz (see, for instance,
[22]). Nevertheless, it is true that at the moment, we do not have a tool
to check if the following Lipschitz-like condition is the most accurate
one. Further work can be done in this direction. On the other hand, the
feedback control law allows us to deal with a typical problem in applied
systems: having this new feedback, one can avoid the actuator errors
as the closed-loop system is ISS with respect to disturbances adding to
the control law. This is of course a first step in the direction because the
feedback linearization is still a hard task for nonlinear delayed systems.
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Off-Line Reference Shaping of Periodic Trajectories for
Constrained Systems With Uncertainties

Hiromi Suzuki, Member, IEEE, and Toshiharu Sugie, Fellow, IEEE

Abstract—This paper is concerned with off-line reference shaping of in-
finite horizon periodic trajectories for uncertain closed-loop systems with
state/input constraints. The method allows us to improve tracking perfor-
mance subject to constraints in the presence of uncertainties. First, the ref-
erence shaping for nominal systems is proposed, which yields a suboptimal
solution through decomposition of the infinite horizon tracking problem
into two finite ones. Second, the method is extended to fulfill the constraints
robustly.

Index Terms—Feed-forward predictive control, infinite horizon control,
model uncertainty, state and control constraints, trajectory tracking.

I. INTRODUCTION

Most real plants have some constraints on their state and/or input
such as actuator saturation and amplitude limitation of certain states.
Without taking these constraints into account, we may have wind-up
phenomena and/or serious performance degradation. One approach to
overcome this issue is to modify the reference signals in such a way
that the system constraints are satisfied, which is known as a refer-
ence governor approach [1]–[3]. The approach inherently prevents the
system from violating constraints because one of the major factors of
constraint violation is to inject inappropriate reference signals. In ad-
dition, it is rather simple and applicable to existing control systems.

Unfortunately, since most of the existing works discuss on-line
reference modification, it is difficult to improve tracking performance,
and heavy computation burden may become a problem. In some
practical cases, however, reference signals are given in advance; it is
NOT necessary to modify the reference on-line in such cases. Based
on this observation, a pure feed-forward approach, which generates
new reference signals through off-line computation, has been proposed
to achieve better tracking performance for constrained linear systems
[4]. According to various numerical examples, this method improves
the tracking performance drastically. It can be regarded as nonlinear
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Fig. 1. Step trajectory tracking with reference shaping.

two-degree-of-freedom control. This work was followed in [5], where
the constraint fulfillment is guaranteed in infinite horizon cases.

The purpose of this note is to establish a method of shaping the peri-
odic reference trajectories with reasonable computation burden so that
the tracking performance will be improved without violating the con-
straints on state and/or input in the presence of model uncertainties.
The method optimizes the nominal tracking performance subject to a
robust constraint fulfillment condition.

NOTATION: Let M1;M2 2 R
m�n and x; y 2 Rn. xi denotes

the i-th component of x. M i;j denotes the (i; j)-th component of M .
Inequalities hold component-wise, i.e.,M1 > M2 implies thatM i;j

1
>

M i;j
2

, 8 i; j.

II. BASIC CONCEPT OF REFERENCE SHAPING

This section provides an introductory view of reference shaping: The
concept of the method and its effectiveness are briefly demonstrated
through a motivating example. This is followed by the system descrip-
tion and problem formulation.

A. How Does the Reference Shaping Work?

Consider the internally stable unity feedback system which consists
of P (z) = (0:00662=z � 0:987) and C(z) = (22z � 16=z � 1).
Assume the system has the input saturation constraint ju(k)j � 15. Our
motivation is to achieve better tracking performance without violating
this constraint.

The simulation result in Fig. 1 illustrates the effectiveness of the
reference shaping. The output y(k) is supposed to track r0(k) = 1
quickly. Fig. 1(a) and (b) show the reference signal r(k) and the plant
output y(k), respectively. First, we apply the step reference signal
r(k) = 1. The dashed line in Fig. 1(b) shows the corresponding
output. A big overshoot occurs in terms of the input saturation.

However, the shaped reference signal, shown by the bold line in
Fig. 1(a), avoids such performance degradation: The corresponding
output is given by the bold line in Fig. 1(b), which shows that the
tracking property is drastically improved. This reference signal is ob-
tained by the off-line reference shaping method we are proposing in
this paper. The above shaped signal looks strange, but it achieves sat-
isfactory tracking performance without constraint violation.

Now, let us make a few remarks on the difference from the existing
reference governor approaches.

• It is not possible for reference governors to improve tracking per-
formance when the original reference signal does not cause con-
straint violation, while the above off-line shaping can.

• On-line computation burden is negligible in the proposed method,
contrary to reference governors. Therefore, it can be easily ap-
plied to systems with fast sampling rates such as electromechan-
ical systems.

B. System Description and Problem Formulation

Consider the linear discrete-time closed-loop system � which con-
sists of the plant and its stabilizing controller. The closed-loop system
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