
Endowing Semantic Query Languages with

Advanced Relaxation Capabilities

Géraud Fokou, Stéphane Jean, Allel Hadjali

LIAS/ENSMA-University of Poitiers
1, Avenue Clement Ader, 86960 Futuroscope Cedex, France
(geraud.fokou, stephane.jean, allel.hadjali)@ensma.fr

Abstract. The problem of relaxing Semantic Web Database (SWDB)
queries that return an empty/unsatisfactory set of answers, has been ad-
dressed by several works in the last years. Most of these studies have
focused on developing new relaxation techniques or on optimizing the
top-k query processing. However, only few works have been conducted
to provide a fine and declarative control of query relaxation to end users
using an SWDB query language. This paper is a first step towards this
direction. We first define a set of requirements for an SWDB cooper-
ative query language. Then, based on these requirements, we propose
an extension of SWDB query languages with a new clause to use and
combine the relaxation operators we introduce. A similarity function is
associated with these operators to rank-order the approximate answers
retrieved. Finally, the implementation as well as the set of experiments
we have conducted to evaluate the performance of the proposed relax-
ation operators, are explicitly described.

Keywords: Semantic Web Databases, Query relaxation, Empty answer,
Ontology, Fuzzy set, Similarity.

1 Introduction

With the widespread adoption of RDF, the need to store and manage huge
amounts of semantic data has appeared. As a consequence, specialized databases
called Semantic Web Databases (SWDB) have been developed during the last
decade (e.g, RDF-3X [12] or OntoDB [6]). Unlike relational databases where
the schema is fixed, SWDBs use a generic schema (a triple table or one of its
variants) that can be used to store a diverse set of data, ranging from structured
data to unstructured data [3]. This flexibility makes that schema more difficult
for users to formulate queries in a correct and complete way. This can often lead
to the problem of empty/unsatisfactory answers. To address such problem, query
relaxation techniques have been proposed to weaken unsuccessful user queries
and retrieve alternative approximate answers.

Several works have been proposed to relax queries in the SWDBs context [2,
5, 4, 7, 9]. They mainly focus either on the proposition of new relaxation operators
or on the efficient processing of the top-k approximate answers. But none of

them has addressed the need of defining a cooperative query language (CQL)
for SWDBs that is capable of expressing most meaningful relaxation operators
in a convenient and declarative manner. This paper is a first step towards this
direction. It takes as a starting point our paper [13] where three relaxation
operators have been proposed: GEN (super classes/properties), SIB (sibling
classes/properties) and PRED (predicates) which are associated with a ranking
function. The following novel main contributions are made in this paper.

– A set of requirements for SWDB’s CQL are defined and a critical review of
existing works according to these requirements is then provided;

– A clear and complete formalization of the proposed relaxation operators,
their formal properties and their combination are discussed explicitly;

– Extensive experiments of the performance of our proposal are conducted on
a real-life application.

The paper is structured as follows. First, Section 2 presents the main require-
ments we have defined for a SWDB’s CQL and the limitations of existing works.
Section 3 describes our approach to extend SWDB languages with relaxation
operators on the one hand, and discusses their mixed use on the other hand.
The implementation part as well as a set of experiments done on the SWDB
OntoDB are presented in Section 4. Finally, Section 5 concludes the paper and
outlines some future work.

2 SWDB’s CQL Requirements and Limitations of

Previous Works

As a first step for designing an CQL for SWDBs, we define below a set of
requirements which a CQL must fulfill.

R1: Diversified set of relaxation operators. The CQL should offer diversi-
fied relaxation operators. It should include generic relaxation techniques (e.g,
predicate relaxation) as well as specific techniques stemmed from ontologies
(i.e., based on entailment rules).

R2: Relaxation operators combination. It is highly desirable for an end-
user to be able to call for a query relaxation that specifies the combination
of different relaxation operators.

R3: Ranking function. The CQL should be able to provide the user with a
discriminated set of answers of a relaxed query. This rank-ordering should
leverage the similarity between the original and relaxed queries and the sat-
isfaction scores of the retrieved answers.

R4: Guide and control of the relaxation process. The CQL should sup-
port a fine tuning and controlling of the relaxation process. Thus, according
to the user needs, the relaxation process could range from being completely
automatic (top-k query) to being completely specified and tuned by the user
using several parameters.

R5: Implementation and performance optimization. The CQL language
should be implemented in a SWDB. Due to the hugeness of RDF data
managed by SWDBs, optimization techniques should be developed to avoid
a time consuming relaxation process.

Currently, works on the empty answers problem have focused on developing re-
laxation techniques to find alternative answers and on the optimization of such
techniques w.r.t to time and quality criteria. Dolog et al. [2] propose a method
based on user’s preferences. The idea is to operate a query rewriting by sub-
stituting concepts/values in the original query by concepts/values preferred by
the user. Other techniques which don’t require user’s preferences have also been
developed. In the spirit of such methods, Hurtado et al.[10] propose a relaxation
approach based on the inferences rules of RDFS. This approach leverages the
subClassOf, subPropertyOf, domain and range relationships of RDFS to relax
a SPARQL query. The end-user can choose the triples that must be relaxed in
a query by using the RELAX clause. Huang et al. [8] use the same relaxation
techniques based on RDFS entailment. To ensure quality of alternatives answers,
they leverage a semantic similarity measure based on concept statistics. Several
optimization techniques are also proposed to obtain the top-k approximate an-
swers efficiently. Elbassuoni et al.[4] show a process for finding similar values of
a precise value needed for a query relaxation.

In Table 1, we provide a synthetic summary of existing works w.r.t. the
previous requirements. One can observe that there is no work that fulfill all the
five requirements for designing an (CQL) in the SWDB context. In particular,
the integration of relaxation operators in a CQL as well as the precise control
of the relaxation process has not been addressed by most of these work. This
paper is a first step to fill this gap.

Table 1: Characterization of existing works w.r.t. the five requirements
Requirements

R1 R2 R3 R4 R5

Dolog et al.[2]
Substitution

Rules
n/a

Based on
users

preferences

trigger rules
(no tuning)

Sesame

Hurtado et
al.[11]

Based on
RDFS rules

RELAX
clause

Distance-
based

Top-k
(no tuning)

n/a

Huang et
al.[8]

Based on
RDFS rules

n/a
Distance-
based and

content-based

Top-k
(no tuning)

Jena
(LUBM)

Elbassuoni et
al.[4]

statistical
language
models

n/a content-based
Domain
target

approach

Tests on
real data set

Hogan et
al.[5]

matchers n/a content-based
Domain
target

approach

Generic
framework
for EADS

3 Extending of SWDB query languages

In this section, we present an extension of the language OntoQL with operators
and clauses of relaxation. Precisely, we introduce and define the following clauses
and operator: Fuzzy and Approx clauses, PRED, GEN and SIB operators.

3.1 Fuzzy Clause

The Fuzzy clause is an extension of fuzzy predicates proposed in SQLf [1]. This
clause allows users to obtain alternative answers with a satisfiability degree
thanks to the membership function paradigm 1. For relaxing a predicate with
Fuzzy clause, the user must precise the tolerance value authorized and the satisfi-
ability degree (s)he desires. The syntax of the fuzzy clause in OntoQL/OntoDB2

is : Fuzzy(Prop, [bornInf, bornSup, pasInf, pasSup]) ≥ degree.

Example 1. Let’s consider the following example with the query Q:
select Name, Price from Motel where Price ≥ 113 and Price ≤ 114.
A relaxed query Q′ of Q with a tolerance value 2, writes as follows :
select Name, Price from Motel where Fuzzy(Price, [113, 114, 2, 2]) ≥ 0.
It is the default use case of the Fuzzy clause. We can have another relaxed query
Q” defined such as:
select Name, Price from Motel where Fuzzy(Price, [113, 114, 2, 2]) ≥ 0.5.
Here, only the prices between 112 and 115 will be selected (see Figure 1b).

3.2 Approx Clause

The clause APPROX shows the parameter of explicit relaxation. In this clause,
we give operators of relaxation and how we use them or combine them. The main
operators of relaxation we use are: PRED, GEN and SIB which will be presented
in the next section. The syntax of APPROX clause is defined as follows:

≺ approx clause ≻ ::= APPROX ≺ approx expression ≻
≺ [TOP ≺ integer ≻]

≺ approx expression ≻ ::= ≺ relax operator ≻
| ≺ approx expression ≻ AND ≺ relax operator ≻

≺ relax operator ≻ ::= ≺ pred operator ≻|≺ gen operator ≻|≺ sib operator ≻

Let us note that this clause is removed when executing the original query. If
the query execution results in an empty answer set, the clause APPROX triggers
the process of the relaxation of the query.

1 A fuzzy set F [1] on the universe X is described by a membership function µF :
X → [0, 1], where µF (x) represents the membership degree of x in F .

2 We use the OntoQL language to present our proposition. However the proposed
extension could also be applied to other SWDB query languages such as SPARQL.

3.3 Relaxation operators

Now, we discuss a set of primitives operators for query relaxation. Each operator
has a precise action on the query to relax. This action will be performed according
to some given parameters.

PRED: The operator PRED is a variant of the Fuzzy clause where the satisfi-
ability degree is set to 0. Moreover, the PRED operator can be repeated many
times until a top-k answers is obtained or the relaxation amount does not lie in
a validity interval V . This interval can be set by the user or by default to the
value V =

[

(
√
5− 1)/2, (

√
5 + 1)/2

]

for numerical predicate [13] (in this case

the tolerance value should be in
[

0, (3−
√
5)/2

]

.). The PRED operator com-
putes all the approximate answers as well as their satisfiability degrees and then
rank-orders the answers.

The syntax of PRED operator is defined as follows:

≺ pred operator ≻::= PRED (≺ var ≻ [, tol, interval])

var is the property to relax, the constant tol is the tolerance value and interval is
the validity interval. So, the signature of PRED is: Q×P×Real×Interval → Q

where Q is the set of users’ queries, P the set of properties.

Example 2. Let us come back to the example 1, the relaxed query Q′ of Q can
be obtained using the PRED as follows: Q′ = PRED(Q,Price, 2, [10, 10]). In
OntoQL syntax, Q′ writes:
select Name, Price from Motel where Price ≥ 113 and Price ≤ 114
Approx(Pred(Price, 2, [10, 10]), top− k).

Note that the PRED operator is still valid in case where the property has a
single value or a closed/opened interval value (see Figure 1).

GEN: Generalization is a particular substitution of concept. This operator uses
entailment of ontology O to guide the relaxation. Let C be an ontology’s class.
With the explicit definition of classes and relationship between them in the
ontology, one can know all the superclasses of C. With the operator GEN all
these super-classes can be used for relaxing C.
The syntax of the operator GEN is defined as follows:

≺ gen operator ≻::= GEN (≺ var ≻ [, Integer])

var is the property to relax and the constant Integer is the maximal level of
generalization authorized, its default value is 1.
Let C′ be one of superclasses of C. Now, for a query Q on class C, the GEN
operator will relax Q by replacing C by C′. As for the properties selected by the
user, called Projection of Q and noted Proj(Q), we apply a particular treatment.
All the properties of C present in Proj(Q) and in C′ are conserved in Proj(Q′)

(a) Predicate on a Single Value (b) Predicate on an Closed Inter-
val

(c) Predicate on an Open Interval (d) Predicate on an Open Interval

Fig. 1: Different Predicate relaxations

and for the other we assign them a null value. The signature of GEN writes
then: Q×C× Integer → Q where C is the set of classes. In GEN(Q,C, i), Q is
the query to relax, C is the class to generalize, it must be in the set of classes
on which the selection is operated (noted Dom(Q)), and i is the maximal level
allowed for the superclass C′ which will generalize C. The reference level 0 refers
to the class C itself.

Proposition 1. Let Q and Q′, be two elements of the set of queries Q and
dom(C) the set of properties of the class C, we have Q′ = GEN(Q,C, i) if and
only if (where SC means Sub-Class relation):

∃ C0, ..., Ci ∈ O� ∀ k ∈ {0..i− 1} , (Ck, SC, Ck+1);

C0 = C and Ck = C′

C ∈ Dom(Q) and C′ ∈ Dom(Q′)

Proj(Q′) = (Proj(Q)− dom(C)) ∪ (dom(C) ∩ dom(C′)

Let Sim(Q,Q′) denotes the similarity between Q and Q′. It is easy to check
that:

Corollary 1. ∀ C0, ..., Ci ∈ O� ∀ k ∈ {0..i− 1} , (Ck, SC, Ck+1);
we have ∀ k ∈ {0..i− 1} , Sim(Q,Qk) ≥ Sim(Q,Qk+1)
with C0 ∈ Dom(Q) and ∀ k ∈ {0..i} , Ck ∈ Dom(Qk).

One can observe that to obtain high quality of approximate answers, it is
better to apply this operator in an incremental way (w.r.t to the parameter i).

Example 3. Considering the ontology HotelBase (figure 4 in annex) and the
query Q of the example 1:
select Name, Price from Motel where Price ≥ 113 and Price ≤ 114.
If we have Q′ = GEN(Q,Motel, 2) then Q′ writes:
select Name, Price from Hotel where Price ≥ 113 and Price ≤ 114
union select Name, Price from Lodging where Price ≥ 113 and Price ≤ 114.
where Hotel is the superclass of Motel at level 1 and Lodging at level 2 .

SIB: Sibling is another form of substitution, it uses entailment but in a different
way than GEN operator. Let C be a class, sibling operator replaces the class C
by the class Ci which has the same direct superclass than C. Assume that the
direct superclass of C is Cs. Then, the relation (C, SC, Cs) holds in the ontology
O. The syntax of the operator SIB is defines as follows:

≺ gen operator ≻::= SIB (≺ var ≻ [, var1[(, var2)
∗]])

where the first variable is the class to relax, the second is the sibling class used
for the relaxation and the optional other variables denote other sibling classes,
in the case where the relaxation process is applied more than one time.
This operator can be seen as a particular restriction of the generalization op-
erator. Indeed, when we generalize a class C with its direct superclass Cs, we
add all the sibling classes of C because they are also subclasses of Cs. With this
operator, one can choose specifically one sibling for the substitution. The usage
of this operator requires knowledge of the data model, since the user must know
which classes are sibling of the class at hand.
The signature of SIB is: Q × C × 2C → Q. In SIB(Q,C, [C1, C2, ..., Cn]), Q is
the query to relax, C is the class in Dom(q) to replace and C1, C2, ..., Cn a list
of sibling classes of C.

Proposition 2. Let Q and Q′, be two elements of the set of queries Q and
dom(C) the set of properties of the class C, we have Q′ = SIB(Q,C, [C1, C2, ..., Cn])
if and only if:

∃ CSp ∈ O � (C, SC, CSp) and ∀i ∈ {1...n} , (Ci, SC, CSp);

C ∈ Dom(Q) and ∀i ∈ {1...n} , Ci ∈ Dom(Q′)

Proj(Q′) = (Proj(Q) − dom(C)) ∪ (∪
i=1..n

(dom(C) ∩ dom(Ci)))

Corollary 2. From Proposition 2, we have ∀i∈1..n, Sim(Q,Qi) ≤ Sim(Q,QSp)
with C ∈ Dom(Q) and ∀i ∈ {1...n}Ci ∈ Dom(Qi) and CSp ∈ Dom(QSp).

One can check thatGEN(Q,C, 1) ⊇ SIB(Q,C, [C1, ..., Cn]) where C,C1, ..., Cn

are all subclasses of a same direct superclass CSp.

Example 4. Considering the ontology of HotelBase (figure 4) and the query Q
of the example 1:
select Name, Price from Motel where Price ≥ 113 and Price ≤ 114.
If we have Q′ = SIB(Q,Motel, [Inn,Resort, Retreat]) then Q′ writes:
select Name, Price from Inn where Price ≥ 113 and Price ≤ 114
union select Name, Price from Resort where Price ≥ 113 and Price ≤ 114
union select Name, Price from Retreat where Price ≥ 113 and Price ≤ 114.
As mentioned above, Q” = GEN(Q,Motel, 1) ⊇ Q′ = SIB(Q,Motel, [Inn,Re-
sort, Retreat, Hostel, BedAndBreakfast])

3.4 Combining relaxation with AND logic Operator

The operator GEN, SIB and PRED can be associated with a logical connector
AND for extending the relaxation operation. But for using this logic operator
one needs to define its syntax and semantics. If PRED extends the value selected
and GEN or SIB changes the domain, these two kind of operators can be then
handled separately.

Conjunction of PRED: Let Q be a query with condition clauses on properties
p1 and p2, we have only the following case:

1. Q′ = PRED(Q, p1, ǫ1, I1) AND PRED(Q, p2, ǫ2, I2) since the two oper-
ators act on two different properties, each property can be relaxed inde-
pendently of the other before execution of Q′, Q′ = (Q1, Q2) where Q1 =
PRED(Q, p1, ǫ1, I1) and Q2 = PRED(Q, p2, ǫ1, I2) and (Q1, Q2) means si-
multaneous relaxation.

Conjunction of GEN and/or SIB: For the conjunction of the same operator
on different attribute classes:

1. Q′ = GEN(Q, c1, level1) AND GEN(Q, c2, level2) the relaxation is applied
independently on C1 and C2. The relaxation is also simultaneous, which
means if Q1 = GEN(Q, c1, level1) and Q2 = GEN(Q, c2, level2) we will
have Q′ = (Q1, Q2).

2. Q′ = SIB(Q, c1, [c1, .., cn]) AND SIB(Q, c2, [c
′
1, ...; c

′
m]) can be written un-

der the form Q′ =
⋃

ci

⋃

c′
j

(Qci , Qc′
j
), with Qci = SIB(Q, c1, [ci]) and Qc′

j
=

SIB(Q, c2, [c
′
j]).

We can also have conjunction ofGEN and SIB, on the same classes or on different
classes:

1. Q′ = GEN(Q, c, level1) AND SIB(Q, c, [c1, .., cn]), since level1 ≥ 1 the
generalization of c will use a superclass of c, as Q1 = GEN(Q, c, level1) will
already include all the sibling of c, so Q2 = (Q, c, [c1, .., cn]) ⊂ Q1. Hence
Q′ = GEN(Q, c, level1).

2. Q′ = GEN(Q, c, level1) AND SIB(Q, c′, [c′1, .., c
′
n]) the class c is substituted

in all the sub-queries of the Union clause of SIB. So,
Q′ =

⋃

i∈{1...level1}

(SIB(GEN(Q, c, i), c′, [c′1, .., c
′
n])).

As it can be seen, all these operators allow users to control precisely and easily
the relaxation process using a SWDB query language.

Computation of similarity and satisfiability: Jean et al.[13] propose the
following similarity measure.

Proposition 3. The similarity between an original class C and its relax class
C′ is :

Sim(c, c′) =
IC(msca(c, c′))

IC(c) + IC(c′)− IC(msca(c, c′))
(1)

Where IC(c) = −log(Pr(c)) corresponds to the information content of the class
c which is defined according to the probability (Pr(c)) of getting an instance of
the class c in the ontology O. msca(c, c′) corresponds to the first concept which
subsumes the two concepts c and c′.

Proposition 4. The satisfiability of an approximate answer hi of the original
query Q is given by:

SatQ(hi) = min(Sim(Q′, Q), SatQ′(hi)) (2)

with

Sim(Q′, Q) = min
i=1..n

(Sim(ci, c
′
i)) (3)

where ci are all the classes relaxed in Q and c′i the corresponding relaxed classes;
and

SatQ′(hi) = min(max
t∈directType(hi)

Sim(t, c′), µp(hi.propRelax)) (4)

where c′ is the relaxed class which gives answer hi and propRelax is the property
which have been relaxed if it is the case.

This similarity is used for a single relaxation operation. For a conjunction
of relaxation operators, we propose an extension of these similarities. Since the
logical connector AND is associative, we can use this property to extend the
combination for n relaxation operators. In case of a conjunction of relaxation
operators, the satisfiability degree of an approximate answer w.r.t. the original
query Q is given as follows:

Proposition 5. Let Q and Q′ be two elements of the set of queries Q with
Q′= AND

i
Opi(Q), ∀i, Opi ∈ (GEN,SIB, PRE) and hr an answer of Q′, we

have the following:

SatQ(hr) = min(Sim(Q′, Q), SatQ′(hk))

Sim(Q,Q′) = min
i
(Sim(Q,Opi(Q)))

SatQ′(hr) = min((max
c∈directType(hr)

Sim(c, c′)), (min
j

µPj
(hr.Pj))

where c′ is the relaxed class in the case of GEN or SIB operator, and µPj
the

membership function of the jth property Pj relaxed by the PRED operator, Opi
is the ith operation (GEN, SIB or PRE) on Q, hr is the rth answer.

4 Implementation and Experiments

4.1 Implementation

The relaxation operators discussed have been implemented in the SWDB On-
toDB/OntoQL. In this SWDB, ontology and instances are stored using a table
per class layout. In this layout, a table is created for each class with a column for
each single-valued property of this class. Multi-valued properties are represented
as two columns tables. At the query engine of OntoQL, we add a module for
relaxation. Figure 2 shows the previous query engine (Analyzer and Interpreter)
enriched with a module for generating the relaxed queries (Generate Next Step
Query). Another module for storing the top-k answers (storing Answer) is also
added with a module for ranking alternative answers (Ranking) following the
similarity measure defined and the result is given to the users.

Fig. 2: Relaxation Query Engine

4.2 Experimentation

The experimentation has been done on real data with usual queries. We use
model data HotelBase (Figure 4 in the annex) where the repartition of data is
given in Table2 and execute 11 queries also given in the annex.

Table 2: Number of Instances by class

Class
Lod-
ging

Hotel
Vaca-
tion
Rental

Other
Apart-
ment

Motel Inn B&B Hostel
Re-
treat

Resort

#Inst-
ances

473165 426357 2863 17630 26315 8853 6560 18452 7186 539 14410

For each query, we get the cost time of the original query execution and the
cost time of each operation of relaxation applied on this query. We compute also
for each query the variation of the similarity at each the step of the relaxation.We
measure also the size of instances on which the relaxed queries will be executed
(Such measures are not presented here due to the limitation pages). The results
of this experiment are given and analyzed in the next section.

4.3 Experiments Results and Analysis

Cost Time: The figure 3 gives the cost time for each kind of relaxation operator
applied to the 11 queries considered. It shows that the execution time of GEN
and SIB at each step of relaxation depends also on the size of data provided by
From clause. Except for PRED operator where the size of data is the same at
each step (since PRED does not modify the domain of the query at hand). Note
that the cost time for PRED at the step i includes the cost time of each previous
step j (j = 1..(i − 1)). In practice, this operator leads to a best cost time than
SIB and GEN since the same set of instances is used to evaluate the original
query and its relaxed variants. The performance of PRED can be improved using
the cache memory to store this set of instances.

For GEN, the histogram of the figure 3b shows the great difference of execu-
tion times between successive relaxation steps is proportional to the difference
between the size of instances (which strongly increase according to the level of
relaxation). This great difference explains the heterogeneous of the dataset of
HotelBase. The figures 3b and 3d confirm that SIB is better than GEN, which is
intuitive since SIB takes sibling classes which have small instance of data than
the superclasses.

Answer Set: Figure 3 gives also the similarity at each step of relaxation and the
size of the result for each operator. Figures 3a, 3c and 3e show that the similarity
decreases when the relaxation step is increasing. In case of PRED, this similarity

Q Q(1) Q(2)

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
ar

it
y

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

(a) GEN Similarity variation

0 1 2 3 4 5 6 7 8 9 10 11

Queries

0

100

200

300

400

500

600

E
la

p
se

d
 t

im
e

(m
il

li
se

c)

Q

Q(1)

Q(2)

1

1

13

13

3

4

812

956

166 33

33

46

46

54

57

(b) GEN Cost Time and Answers set Size

Q Q(1) Q(2)
0.0

0.2

0.4

0.6

0.8

1.0

si
m

ila
ri

ty

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9
Q10
Q11

(c) SIB Similarity variation

0 1 2 3 4 5 6 7 8 9 10 11

Queries

0

100

200

300

400

500

600

700
E

la
ps

ed
 ti

m
e

(m
ill

is
ec

)
Q
Q(1)
Q(2)

4

4

162
166

6

7

1

2

(d) SIB Cost Time and Answers set Size

Q Q(1) Q(2) Q(3)

0.0

0.2

0.4

0.6

0.8

1.0

si
m

il
ar

it
y

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

(e) PRED Similarity variation Similarity

0 1 2 3 4 5 6 7 8 9 10 11

Queries

0

10

20

30

40

50

60

70

E
la

ps
ed

 ti
m

e
(m

ill
is

ec
)

Q
Q(1)
Q(2)
Q(3)

1

2

4

2

2

5

1

1

2

4

6

(f) PRED Cost Time and Answers set Size

Fig. 3: Cost Time, size of Answers set and Similarity variation for each operator

does not decrease as fast as in case of GEN and SIB. Additionally to its time
performance, PRED is the operator that conserves better the similarity in the
relaxation process. Now, since the similarity measure depends on information
content, the rapid fall of similarity of GEN and SIB can be explained by the
heterogeneous repartition of instances between classes. Figures 3b, 3d and 3f give
the number of answers for each operator (numbers on the top of each histogram).
These numbers show that PRED gives less answers than SIB and GEN, this is
due to the heterogeneous repartition of values between instances of classes. While
this heterogeneity does not affect GEN and SIB since they retrieve answers in
other classes.

5 Conclusion

In this paper, we have addressed the issue of query relaxation in the SWDB
context. We have proposed a set of primitive relaxation operators and also shown
how these operators can be integrated in a query language. A set of experiments
has been conducted to demonstrate the feasibility of the approach and study both
the time performance and the quality of alternative answers for each operator.
The analysis of experiment results reveals that the structure of the data model
(i.e., ontology) and the data repartition in classes impact the performance and
quality for each operator.

For instance,statistics on data could be used as indicator for choosing the
best relaxation operator to apply. Another line of research is to implement a
relaxation advisor, for advising user to the inconvenient and advantage of using
different operators or their combination.

Finally, one can also leverages user feedback to evaluate the results provided
by the relaxation process.

References

1. P. Bosc and O. Pivert. Sqlf: A relational database language for fuzzy querying.
Trans. Fuz Sys., 3(1):1–17, February 1995.

2. Peter Dolog, Heiner Stuckenschmidt, Holger Wache, and Jörg Diederich. Relaxing
rdf queries based on user and domain preferences. IJIIS, 33(3):239–260, 2009.

3. Songyun Duan, Anastasios Kementsietsidis, Kavitha Srinivas, and Octavian Udrea.
Apples and oranges: A comparison of rdf benchmarks and real rdf datasets. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’11, pages 145–156, New York, NY, USA, 2011. ACM.
4. Shady Elbassuoni, Maya Ramanath, and Gerhard Weikum. Query relaxation for

entity-relationship search. In ESWC’11, pages 62–76, 2011.
5. Aidan Hogan, Marc Mellotte, Gavin Powell, and Dafni Stampouli. Towards fuzzy

query-relaxation for rdf. In ESWC’12, pages 687–702, 2012.
6. Dehainsala Hondjack, Guy Pierra, and Ladjel Bellatreche. Ontodb: An ontology-

based database for data intensive applications. In DASFAA, pages 497–508, 2007.
7. Hai Huang and Chengfei Liu. Query relaxation for star queries on rdf. In Proceed-

ings of the 11th international conference on Web information systems engineering,
WISE’10, pages 376–389, Berlin, Heidelberg, 2010. Springer-Verlag.

8. Hai Huang, Chengfei Liu, and Xiaofang Zhou. Approximating query answering on
rdf databases. World Wide Web, 15(1):89–114, January 2012.

9. Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. A relaxed ap-
proach to rdf querying. In Proceedings of the 5th international conference on The

Semantic Web, ISWC’06, pages 314–328, Berlin, Heidelberg, 2006. Springer-Verlag.
10. Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Journal on data

semantics X. chapter Query relaxation in RDF, pages 31–61. 2008.
11. Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. Ranking approxi-

mate answers to semantic web queries. In Proceedings of the 6th European Semantic

Web Conference on The Semantic Web: Research and Applications, ESWC 2009
Heraklion, pages 263–277, Berlin, Heidelberg, 2009. Springer-Verlag.

12. Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scalable man-
agement of RDF data. VLDB Journal, 19(1):91–113, 2010.

13. Jean Stéphane, Hadjali Allel, and Mars Ammar. Towards a cooperative query
language for semantic web database queries. In ODBASE 2013, pages 519–526.

Annex

1. SELECT name, nbstart, price, cityname FROM BedAndBreakfast B

WHERE B.price<= 29 AND B.nbstart=5 AND B.cityname=’Belgrade’

2. SELECT name, nbstart, price, cityname FROM Inn I

WHERE I.price<= 15 AND I.nbstart=5 AND I.cityname=’Shanghai’

3. SELECT name, nbstart, price, cityname FROM Motel M

WHERE M.price<= 80 AND M.nbstart=5 AND M.cityname=’Istanbul’

4. SELECT name, nbstart, price, statename FROM Resort R

WHERE R.price<= 85 AND R.nbstart=5 AND R.statename=’California’

5. SELECT name, nbstart, price, cityname FROM Motel M

WHERE M.nbstart<=4 AND M.cityname=’Istanbul’

6. SELECT name, nbstart, price, cityname FROM Resort R

WHERE R.nbstart>=8 AND R.cityname=’Istanbul’

7. SELECT name, nbstart, price, cityname FROM VacationRental R

WHERE R.nbstart=4 AND R.cityname=’Istanbul’ AND price<90

8. SELECT name, nbstart, price, cityname FROM Inn I

WHERE I.price<= 20 AND I.nbstart=3 AND I.cityname=’Shanghai’

9. SELECT name, nbstart, price, statename FROM Resort R

WHERE R.price< 80 AND R.nbstart=3 AND R.statename=’Pennsylvania’

10. SELECT name, nbstart, price, cityname FROM Motel M

WHERE M.price >= 40 AND M.nbstart=3 AND M.cityname=’Nanjing’

11. SELECT name, nbstart, price, cityname FROM Apartment A

WHERE A.nbstart = 4 AND A.cityname=’Kolobrzeg’ AND A.price< 50 AND A.price >= 45

-name

-nbstart

-price

-cityname

-statename

-countryname

-address

Lodging

Hotel

VacationRental

Other

Appartment

Motel

Inn

BedAndBreakFast

Hostel

Retreat

Resort

M2, 1, 40,...

M1, 2, 45,

olso ...

I1, 3, 90,...

I3, 2, 150,... Hs1, 1, 25,.. Hs2,1,22,...

B1, 2, 47,... B2,1,41,...

Rt2,1,26,...

Rt1,1,1,20,...

Rs2,4,155,...

Rs1,3,94,...

H1,4,157,...

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

instanceOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

subClassOf

Visual Paradigm for UML Community Edition [not for commercial use]

Fig. 4: Model and Instance of HotelBase

