
Persistent Meta-Modeling Systems as
Heterogeneous Model Repositories

Youness Bazhar1, Yassine Ouhammou1, Yamine Aı̈t-Ameur2, Emmanuel
Grolleau1, and Stéphane Jean1

1 LIAS/ISAE-ENSMA and University of Poitiers, Futuroscope, France.
{bazhary, ouhammoy, grolleau, jean}@ensma.fr

2 IRIT/INP-ENSEEIHT, Toulouse, France.
yamine@enseeiht.fr

Abstract. Model persistence has always been one of the major interests
of the model-driven development community. In this context, Persistent
Meta-Modeling Systems (PMMS) have been proposed as database en-
vironments dedicated to meta-modeling and model management. Yet, if
existing PMMS store meta-models, models and instances, they provide
mechanisms that are sometimes insufficient to accomplish some advanced
model management tasks like model transformation or model analysis. In
this paper we validate the work achieved in [5] by exploiting the support
of user-defined operations in PMMS in order to perform model transfor-
mations and model analysis.

Keywords: meta-modeling, model management, database.

1 Introduction

Recently, the use of model-based engineering technologies and modeling tools
has widely increased especially in industrial contexts. This generates very often,
in case of an excessive use, large scale models which raise the issue of scalability
as one of the major weaknesses of applying modeling in real industrial contexts.
Moreover, industries need also to share and exchange voluminous models and
data, and a simple file exchange may sometimes be insufficient. These issues are
industrial and scientific challenges and consequently, we need platforms to (i)
overcome issues of scalability, (ii) surmount problems related to the heterogene-
ity of models, and (iii) provide a common repository for model sharing. Thus,
Persistent Meta-Modeling Systems (PMMS) have been proposed as the leading
solution that satisfy all these requirements. Indeed, a PMMS is a meta-modeling
and model management system equipped with (1) a database that stores meta-
models, models and instances, and (2) an associated exploitation language that
possesses meta-modeling and model management capabilities. But, if existing
PMMS support the definition and the storage of meta-models, models and in-
stances, they provide mechanisms that are not adapted to accomplish some ad-
vanced model management tasks like model transformation, code generation,

model analysis, etc. This is due to the lack of developed behavioral semantics
in PMMS since current PMMS offer mechanisms that are either specific to the
database or to the domain the PMMS is dedicated to. Thus, in a recent work
[5], we have proposed an extension of PMMS with the support of behavioral
semantics with wide programming capabilities. Indeed, this proposition consists
of introducing dynamically user-defined operations that can be implemented by
web services and external programs written in any language (e.g., Java, C++).
These operations can manipulate complex types (e.g., classes and meta-classes)
as well as simple types (e.g., string, integer). This work has been validated with
an application for handling derived ontologies concepts [6]. The contribution
of this paper is to show how model transformations and model analysis can
be achieved in PMMS using the approach presented in [5]. This application is
prototyped with an implementation on the OntoDB/OntoQL PMMS [9].

The remainder of this paper is organized as follows. Section 2 introduces
a motivating example that raises the need of operations in PMMS for model
management. Section 3 gives an overview on the state of the art. Section 4
exposes the OntoDB/OntoQL PMMS on which our approach is based. Section 5
presents our approach for extending PMMS with the support of user-defined
operations. Section 6 presents a model transformation and a model analysis case
studies that show the usefulness of extending PMMS with operations. Finally,
Section 7 is devoted to a conclusion.

2 A Motivating Example

This section presents an example of a real-time system that we use throughout
this paper. The aim of this example is to design an uniprocessor system with
three periodic tasks (T1, T2 and T3). Each task is characterized by a period P,
a deadline D, and a worst-case execution time ET. The system scheduling follows
the EDF (Earliest Deadline First) scheduling policy. This system is defined as a
set of tasks: S =< T1, T2, T3 >, where:

T1 =< P = 29ms,D = 29ms,ET = 7ms >
T2 =< P = 5ms,D = 5ms,ET = 1ms >
T3 =< P = 10ms,D = 10ms,ET = 2ms >
This kind of systems can be designed using languages dedicated to design

real-time and embedded systems like AADL [4] (see Figure 1) or MARTE [2].
Indeed, AADL (Architecture Analysis and Design Language) is an architecture
description language dedicated to describe components and their hierarchical
composition, while MARTE (Modeling and Analysis of Real Time and Embed-
ded systems) is a modeling language dedicated to design both software and
hardware aspects of real-time and embedded systems and supports schedulabil-
ity analysis.

AADL and MARTE could express the system of our example using different
constructors and following different methodologies. One of the major differences
between these two languages is that AADL is more oriented towards architec-
ture description and does not offer the capability to analyze the schedulability of

Fig. 1. The system S of our example expressed with AADL

systems, while MARTE meets this need. Here, we can already see the problem
of heterogeneous modeling that appears in the design of complex systems. Thus,
analyzing an AADL model schedulability must go through a model transforma-
tion to MARTE.

Our objective is to be able to share the system of our example independently
of the formalism used to express it. For this, the PMMS shall provide mechanisms
to be able to transform AADL models to MARTE ones and vice versa. Moreover,
we would like to be able to analyze the schedulability of our system regardless the
formalism used to design it. Achieving these model management tasks require
operators.

Next section presents existing PMMS and discusses their capabilities and
limitations concerning behavioral semantics.

3 Related Work

In our study of the state of the art, we have classified model persistence systems
into two types: model repositories and their exploitation languages that only
serve to store and retrieve models, and database environments for meta-modeling
and model management. This section presents and discusses these two model
persistence systems.

3.1 Model Repositories and their Exploitation Languages

Some meta-modeling systems are equipped with persistent repositories that are
dedicated to store meta-models, models and instances [7]. These repositories
use many back ends to store the different abstraction layers such as relational,
NoSQL or XML databases. Main examples of these model repositories are dMOF

[8], MDR [19], EMFStore [18] and Morsa [10]. These repositories store MOF
[1] and UML [3] models, and focus mainly, like in [11], on the architecture of
the repository. As a consequence, they serve only as model warehouses in the
sense that they do not offer a persistent environment for meta-modeling nor
model management since all meta-modeling and model management tasks re-
quire loading models and instances from the repository and processing them in
main memory.

Persistent model repositories are equipped with declarative query languages
restricted only to querying capabilities. Main examples of model repositories
query languages are mSQL [23], P-OQL [13], SQL/M [17], iRM/mSQL [22] and
MQL [12]. These languages do not possess neither meta-modeling nor model
management capabilities, and thus they remain high-level query languages only.

Persistent model repositories and their associated query languages do not
offer persistent environments for meta-modeling and model management.

3.2 Persistent Model Management Systems

To manage models inside the database, several PMMS have been proposed like
ConceptBase [15], Rondo [21], Clio [14] and OntoDB/OntoQL [9]. These PMMS
handle the structural semantics of models by offering constructors of (meta-
)classes, (meta-)attributes, etc. Yet, they provide hard-encoded mechanisms to
express behavioral semantics such as predefined operators (like in Rondo and
Clio), or use classic database procedural languages (e.g., PL/SQL) which can-
not manipulate complex types (e.g., meta-classes or classes). The most advanced
PMMS remain ConceptBase since it gives the possibility to introduce user-
defined functions with external implementations. However, these implementa-
tions can only be done in the Prolog language. Besides external programs have
to be stored in a special and internal file system, and requires restarting the
server (cold start) in order to support the function newly introduced [16].

As the previous overview of the state of the art shows, current PMMS do
not support the definition on the fly of model management operations that can
be implemented using external programs and web services hence the necessity
to extend PMMS with such capabilities.

Next section presents the OntoDB/OntoQL PMMS that we use to implement
our approach.

4 The OntoDB/OntoQL Persistent Meta-Modeling
System

OntoDB/OntoQL [9] is a four-layered persistent meta-modeling system where
only the meta meta-model is hard-encoded (see Figure 2) so that we can extend
on the fly the meta-model layer in order to integrate different meta-modeling for-
malisms (warm start). This system is equipped with the OntoDB model reposi-
tory and the OntoQL exploitation language that we present in the next subsec-
tions.

SystemcatalogModel 1 Meta-model layerModel layerData layer
Meta Meta-Model layer (M3)Meta-Model layer (M2)Model layer (M1)Instance layer (M0)

<<instanceOf>><<instanceOf>>
<<instanceOf>>

PersistenceModel 2Instance 1 Instance 2 Model …Instance …
Meta-model …Meta-model 1 Meta-model 2

* *1
1

attrssuperClass **MetaModel- name: StringMetaModel- name: String *1 Class- name: StringClass- name: String Datatype
Attribute- name: StringAttribute- name: String

Operation-name: StringOperation-name: String * ***
classes returnTypeparamTypesrelationship**Implementation- name: StringImplementation- name: StringDescriptor-key: String-value : StringDescriptor-key: String-value : String * 1* 1

Fig. 2. The architecture of OntoDB/OntoQL

4.1 The OntoDB model repository

The OntoDB model repository architecture consists of four parts (Figure 2).
The system catalog and data layer parts are the classical parts of traditional
databases. The system catalog part contains tables used to manipulate the whole
data stored in the the database, and the data layer part stores instances of
models. The meta-model layer and model layer parts store respectively meta-
models and models. Note that OntoDB respects the separation of the different
storage layers and preserves the conformity of models and instances.

ProcessStringname ThreadStringname itsClasstypename Attribute ProcessStringname ThreadStringname itsClasstypename Attribute

TasknameThreadTasknameThread cpu_embsysnameProcesscpu_embsysnameProcess
proccpu_embsysproccpu_embsysT2T3T1TaskT2T3T1Task

MARTEMetaModel…AADLMetaModelMetaModelMARTEMetaModel…AADLMetaModelMetaModel
AADLMetaModelProcess ……… AADLMetaModelThread metaModelsuperClassname Class AADLMetaModelProcess ……… AADLMetaModelThread metaModelsuperClassname Class

Meta-Model layer (M2)
Model layer (M1)
Instance layer (M0)

Fig. 3. Data representation in the OntoDB model repository

OntoDB stores data in relational tables since it is implemented on the Post-
greSQL RDBMS. Figure 3 shows the representation of some concepts of our
example. The meta-model layer contains three main tables: MetaModel, Class
and Attribute that store respectively meta-models, classes and attributes. Each
class is associated to a corresponding table at the model layer that stores class
instances. Similarly, each concept at the model layer is associated to a corre-
sponding table at the data layer to store instances.

4.2 The OntoQL meta-modeling language

OntoQL has been defined in order to facilitate the exploitation of model repos-
itories. OntoQL is a declarative and object-oriented language owning meta-
modeling and querying capabilities. Indeed, OntoQL has been proposed to cre-
ate and manipulate meta-models, models and data without any knowledge of
the structure of tables and their relationships. One of the benefits of OntoQL
is that it guarantees a large flexibility of expressiveness so that we can create
meta-models and models on the fly. This subsection shows how we can create
meta-models and models using OntoQL.

Meta-model definition. the meta-model part of the OntoDB model repository
can be enriched to support new meta-models using the OntoQL language. Below
we give some of the OntoQL statements for defining the AADL meta-model
(Listing 1.1).

Listing 1.1. A subset of OntoQL statements for creating the AADL meta-model

CREATE ENTITY #Property (
#name STRING,
#value STRING) ;

CREATE ENTITY #ProcessSubComponent ;

CREATE ENTITY #ThreadC la s s i f i e r UNDER #ProcessSubComponent ;

CREATE ENTITY #ThreadType UNDER #ThreadC la s s i f i e r (
#name STRING
#extends REF (#ThreadType)) ;

CREATE ENTITY #ThreadImpl UNDER #ThreadC la s s i f i e r (
#name STRING,
#p r op e r t i e s REF (#Property) ARRAY,
#implements REF (#Thr eadC l a s s i f i e r) ,
#extends REF (#ThreadImpl)) ;

Model definition. once a meta-model is defined and supported by the On-
toDB/OntoQL platform, we become able to create models conforming to that
meta-model. Next statements create the AADL model of our example.

CREATE #ThreadType Task ;

CREATE #ThreadImpl Task . Impl1
PROPERTIES (

Dispatch Protoco l = Per iod ic ,
Compute Execution Time = 7Ms . . 7Ms,
Deadl ine = 29Ms,
Period = 29Ms)

IMPLEMENTS Task ;

OntoQL possesses also querying capabilities so that it makes possible to
query the different layers. Moreover, OntoQL supports the other persistence
basics (UPDATE and DELETE) for meta-models, models and instances.

Limitations of OntoDB/OntoQL. at this level, we only obtain an AADL
model of our system. And if we need to derive the corresponding MARTE model
of our system, this requires (1) storing the MARTE meta-model in OntoDB and
(2) defining a model transformation from AADL to MARTE using operations.
The first step is feasible as OntoDB/OntoQL supports the definition on the fly
of meta-models and models. Yet, the second step cannot be accomplished since
OntoDB/OntoQL does not support the definition of operations on meta-models
and models elements. Moreover, OntoDB/OntoQL cannot allow us to analyze
the schedulability of our system for the same reason. Indeed, we need an opera-
tor that computes the schedulability by invoking an analysis test. Thus, OntoD-
B/OntoQL has to be extended in order to overcome this limitation. Next section
presents the extension of OntoDB/OntoQL to support behavioral semantics.

5 Extending Persistent Meta-Modeling Systems with
Behavioral Semantics

In order to handle behavioral semantics in PMMS, we have extended the meta
meta-model supported by the OntoDB/OntoQL PMMS with the concepts of Op-
eration, Implementation and Descriptor as shown in the dotted box of Figure 2.
They represent respectively a function or a procedure, its associated implemen-
tations and implementations descriptors. The extension of the OntoDB/OntoQL
system took place in two main stages detailed in next subsections.

5.1 Extending the OntoDB model repository

The first stage concerns the extension of the meta meta-model layer at repository
level with tables that store operations definitions, implementations and imple-
mentations descriptions. Figure 4 shows the main tables resulted from the exten-
sion of the meta meta-model layer of OntoDB. The Operation, Implementation
and Descriptor tables store respectively operations signatures (the operation
name, inputs and outputs), implementations and descriptions of these imple-
mentations.

5.2 Extending the OntoQL meta-modeling language

The second stage of our PMMS extension consists in enriching the OntoQL lan-
guage with the capability to create and exploit operations and implementations.

…Attribute…Attribute…Class…Class……… MARTEMetaModelaadlMetaModelaadl2Marte outputinputname Operation ……… MARTEMetaModelaadlMetaModelaadl2Marte outputinputname Operation

Meta-Model layer (M2)Instance layer (M0)
…… aadl2Marteaadl2MarteImp1 ImplementsnameImplementation …… aadl2Marteaadl2MarteImp1 ImplementsnameImplementation

aadl2MarteImp1fr.ensma.lias.myClassclass aadl2MarteImp1http://193.55.../programs.jarlocation aadl2MarteImp1aadl2MarteJavamethod ………
aadl2MarteImp1javatype implementationvaluename Descriptors
aadl2MarteImp1fr.ensma.lias.myClassclass aadl2MarteImp1http://193.55.../programs.jarlocation aadl2MarteImp1aadl2MarteJavamethod ………
aadl2MarteImp1javatype implementationvaluename Descriptors

Model layer (M1)
Fig. 4. The extension of the meta meta-model layer of OntoDB

OntoQL has been enhanced with CRUD (CREATE, READ, UPDATE and
DELETE) basics permitting to create, read, delete and update operations and
implementations. An example of the established OntoQL syntax is shown through
the following statements.

CREATE OPERATION #ru l e1
INPUT (REF (#SystemType) ,

REF (#SystemImpl))
OUTPUT (REF (#saAnalys i sContext) ,

REF (#gaResourcesPlat form)) ;

CREATE IMPLEMENTATION #rule1JavaImp
DESCRIPTORS (

type = ’ java ’ ,
l o c a t i o n = ’ 1 9 3 . 5 5 . . . / programs . jar ’ ,
c l a s s = ’ f r . ensma . l i a s . AadlToMarte ’ ,
method = ’ rule1Imp ’)

IMPLEMENTS #ru l e1 ;

The first statement creates an operation that has an AADL System and
SystemImpl input, and a MARTE saAnalysisContext and gaResourcesPlat-

form model output. The second statement defines an implementation of the
operation previously defined by providing a set of meta-data of a remote Java
program stored outside the database implementing this operation. This meta-
data is exploited to run the remote program.

The other aspect of extending of the OntoDB/OntoQL PMMS was to set
up mechanisms that make the mapping between data types of the OntoDB/On-
toQL system, and data types of the external implementations. Thus, we have
set up a behavior API (Application Programming Interface) that serves as an
intermediate layer between the OntoDB/OntoQL world and the external world.
In particular, it provides generic infrastructures to specify data types correspon-
dences between the two worlds, and to execute remote programs and services.

6 Managing models within PMMS

This section is devoted to show the usefulness, for model management, of ex-
tending PMMS with behavioral semantics. We firstly show how we can define
transformation operations of AADL models to MARTE ones, and then we show
how we can use operations for real-time models analysis.

AADL MARTE

rule 1 SystemType and SystemImpl saAnalysisContext and
gaResourcesPlatform stereotypes

rule 2 SystemClassifier subcomponent Specified by Resources tagged value
of gaResourcesPlatform

rule 2.1 ProcessType and ProcessImpl MemoryPartition and Scheduler

rule 2.2 ProcessorType and ProcessorImpl hwProcessor stereotype

rule 2.3 ProcessorImpl properties Specified by the schedPolicy tagged
scheduling protocol property value of Scheduler stereotype.

rule 2.3.1 ProcessClassifier subcomponent SchedulableResources tagged
value of Scheduler stereotype

rule 2.3.1.1 ThreadType and ThreadImpl swSchedulableResource and saStep

rule 2.3.1.2 ThreadImpl properties: Tagged values of swSchedulableResource

- dispatch protocol and period - Specified by type tagged value
(a type of ArrivalPattern)

- deadline In this case: tagged values of saStep

- compute execution time - Specified by deadline tagged value
- Specified by execTime tagged value

rule 2.4 SystemImpl properties Specified by processingUnits tagged
- actual procesor binding value of Scheduler stereotype

Table 1. AADL to MARTE transformation rules

AADL to MARTE transformation: while AADL is dedicated to design
system architectures, MARTE is structured around two main concerns: one to
model the features of real-time and embedded systems and the other to annotate
application models in order to support analysis of system properties.

Table 1 summarizes the different concept mappings from AADL to MARTE.
These transformation rules are introduced in order to justify the operations, we
define later in the paper, for transforming AADL models to MARTE ones.

6.1 Using Operations for Model Transformation

We precise that our objective is not to propose a new transformation approach,
neither to guarantee a safe transformation from AADL to MARTE. Several
works have addressed the transformation form AADL to MARTE.

As it has been stressed before, our objective is to use the possibility to intro-
duce operations on the fly in the OntoDB/OntoQL system in order to transform

AADL models into MARTE ones. Indeed, we firstly create model transformation
operations that will transform AADL concepts to MARTE ones, then we create
corresponding implementations. These two steps are explained below in detail.
Definition of transformation operations: the definition of AADL to MARTE
transformation operations consists of specifying for each operation its name, its
eventual input and output types. The following statements define some of the
essential transformation operations based on rules defined in Table 1.

Listing 1.2. AADL to MARTE transformation operations

CREATE OPERATION #ru l e1
INPUT (REF (#SystemType) , // AADL source e lements

REF (#SystemImpl))
OUTPUT (REF (#saAnalys i sContext) , // MARTE ta rg e t e lements

REF (#gaResourcesPlat form)) ;

CREATE OPERATION #ru l e2
INPUT (REF (#SystemSubComponent) ARRAY)
OUTPUT (REF (#Resource) ARRAY) ;

CREATE OPERATION #ru l e2 . 1
INPUT (REF (#ProcessType) ,

REF (#ProcessImpl))
OUTPUT (REF (#MemoryPartition) ,

REF (#Scheduler)) ;

CREATE OPERATION #ru l e2 . 2
INPUT (REF (#ProcessorType) ,

REF (#ProcessorImpl))
OUTPUT (REF (#hwProcessor)) ;

The #rule1 operation transforms a SystemType and its associated System-

Impl of an AADL model to their corresponding concepts in MARTE (saAna-
lysisContext and gaResourcesPlatform). The #rule2 operation transforms
SystemClassifier subcomponents of an AADL model to Resouce elements of
the gaResourcesPlatform.
Definition of Implementations: once we have defined model transformation
operations, we establish their associated implementations descriptions. The fol-
lowing statements define implementations descriptions of the operations previ-
ously defined.

CREATE IMPLEMENTATION #rule1JavaImp
DESCRIPTORS (

type = ’ java ’ ,
l o c a t i o n = ’ 1 9 3 . 5 5 . . . / programs . jar ’ ,
c l a s s = ’ f r . ensma . l i a s . AadlToMarte ’ ,
method = ’ rule1Imp ’)

IMPLEMENTS #ru l e1 ;

CREATE IMPLEMENTATION #rule2JavaImp
DESCRIPTORS (

. . .
method = ’ rule2Imp ’)

IMPLEMENTS #ru l e2 ;

CREATE IMPLEMENTATION #ru l e2 . 1 JavaImp
DESCRIPTORS (

. . .
method = ’ ru l e2 . 1 Imp ’)

IMPLEMENTS #ru l e2 . 1 ;

CREATE IMPLEMENTATION #ru l e2 . 1 JavaImp
DESCRIPTORS (

. . .
method = ’ ru l e2 . 2 Imp ’)

IMPLEMENTS #ru l e2 . 2 ;

Exploiting defined operations: after defining operations and their implemen-
tations descriptions, we become able to invoke the defined operations in order
to transform AADL concepts to MARTE ones. For instance, we can use the
established operations for obtaining our AADL source model expressed in the
MARTE formalism. We can also transform the same model to a MARTE model
in order to have two representations of our system.

CREATE #saAnalys i sContext marte embsys
AS SELECT #ru l e1 (embsys , embsys . Impl)

FROM #Sys t emC la s s i f i e r ;

CREATE #gaResourcesPlat form marte embsys
AS SELECT #ru l e1 (embsys , embsys . Impl)

FROM #Sys t emC la s s i f i e r ;

CREATE #MemoryPartition marte memory
AS SELECT #ru l e2 . 1 (proc embsys , proc embsys . Impl)

FROM #Pr o c e s sC l a s s i f i e r ;

CREATE #Scheduler marte schedu le r
AS SELECT #ru l e2 . 1 (proc embsys , proc embsys . Impl)

FROM #Pr o c e s sC l a s s i f i e r ;

CREATE #gaResourcesPlat form marte embsys cpu
AS SELECT #ru l e2 (embsys cpu) FROM #Proces sor ;

The first statement selects the MARTE system resulted from the transfor-
mation of the AADL model of our example, while the second statement reads
the resulted MARTE memory and scheduler concepts from the transformation
of the proc embsys process element of the AADL model of our system. Whereas,
the last statement creates a gaResourcesPlatform instance from the resulting
transformation of the embsys cpu processor of the AADL model.

These are only examples of the multiple transformation operations and oper-
ation invocations we have written in order to permit a complete transformation
and mapping from AADL to MARTE. This eases accessing, updating, deleting
and transforming AADL models even if we do not adopt AADL as a main lan-
guage for designing real-time and embedded system. We can also go further by
setting up an operation that analyzes the schedulability of our AADL model
that we detail in the next subsection.

6.2 Using Operations for Model Analysis

Once the MARTE model is obtained after this transformation, it becomes pos-
sible to trigger scheduler analysis on these MARTE models.

So, to analyze the schedulability of the system of our example, we define
an operation whose objective is to analyze the schedulability of our system. To
achieve this task, we create an operation isSchedulable that takes as input

a MARTE model and returns as output a boolean value which states whether
the systems is schedulable or not. This operation is implemented with a Java
program that invokes the MAST analysis tool [20].

CREATE OPERATION #isSchedu l ab l e
INPUT (REF (#MARTEModel))
OUTPUT (BOOLEAN) ;

CREATE IMPLEMENTATION #isSchedulableJavaImp
DESCRIPTORS (

type = ’ Java ’ ,
l o c a t i o n = ’ 1 9 3 . 5 5 . . . / programs . jar ’ ,
c l a s s = ’ f r . ensma . l i a s . Analyzer ’ ,
method = ’ isSchedulerImp ’)

IMPLEMENTS #isSchedu l ab l e ;

Now, it becomes possible to run the analysis by invoking the previous oper-
ation in the following statement.

SELECT #isSchedu l ab l e (#aadl2Marte (embsys . Impl)) FROM #SystemImpl

This statement asserts whether the embsys system, transformed from AADL
to MARTE by the #aadl2Marte operation, is schedulable or not. Here, we ana-
lyze the schedulability of the corresponding MARTE model of our system. Note
also that the invocation of the isSchedulable operation requires providing a
MARTE model as input and thus, we provide an operation invocation as an
argument of the #isSchedulable operation since OntoDB/OntoQL supports
such manipulation. The previous statement invokes the isSchedulable analy-
sis operation which is specific to MARTE, using an AADL resource hiding the
transformation process to the user.

7 Conclusion and Perspectives

In this paper, we have validated our approach presented in [5] by using operations
in PMMS for model transformation and model analysis. The use of operations
enables particularly sharing models regardless of the language used to design
them.

The work presented in this paper opens many perspectives. We expect to
enhance our approach by integrating membership constraints so that operations
can be defined only for a specific class like in object-oriented programming.
Another perspective consists of defining an object constraint language to express
static semantics in persistent meta-modeling systems by storing and evaluating
the expression of invariants, contracts, and so on that can be associated to classes
and operations.

References

1. Meta object facility (mof). Technical report, Object Management Group, August
2011.

2. Uml profile for marte : Modeling and analysis of real-time embedded systems.
Technical report, Object Management Group, June 2011.

3. Unified modeling language (uml). Technical report, Object Management Group,
August 2011.

4. Architecture analysis & design language (aadl). Technical report, SAE Interna-
tional, September 2012.

5. Youness Bazhar, Yamine Aı̈t Ameur, and Stéphane Jean. Bemore: a repository for
handling models behaviors. In SEKE, June 2013.

6. Youness Bazhar, Chedlia Chakroun, Yamine Aı̈t Ameur, Ladjel Bellatreche, and
Stéphane Jean. Extending ontology-based databases with behavioral semantics.
In OTM Conferences (2), pages 879–896, 2012.

7. Philip A. Bernstein and Umeshwar Dayal. An overview of repository technology.
In VLDB, pages 705–713, 1994.

8. Cooperative Research Centre for Distributed Systems Technology (DSTC). dMOF
version 1.1 user guide, 2000.

9. Hondjack Dehainsala, Guy Pierra, and Ladjel Bellatreche. Ontodb: An ontology-
based database for data intensive applications. In DASFAA Conference, 2007.

10. Javier Espinazo-Pagán, Jesús Sánchez Cuadrado, and Jesús Garćıa Molina. Morsa:
A scalable approach for persisting and accessing large models. In MoDELS, pages
77–92, 2011.

11. Javier Espinazo-Pagán and Jesús Garćıa-Molina. A homogeneous repository for
collaborative mde. In Proceedings of the 1st International Workshop on Model
Comparison in Practice, IWMCP ’10, pages 56–65, New York, NY, USA, 2010.
ACM.

12. David Hearnden, Kerry Raymond, and Jim Steel. Mql: a powerful extension to ocl
for mof queries. In EDOC, pages 264–277, 2003.

13. Andreas Henrich and Praktische Informatik Fachbereich Elektrotechnik. P-oql: an
oql-oriented query language for pcte. In In Proc. 7th Conf. on Software Engineering
Environments, pages 48–60. IEEE Computer Society Press, 1995.

14. Mauricio A. Hernández, Renée J. Miller, and Laura M. Haas. Clio: a semi-
automatic tool for schema mapping. In SIGMOD Conference, 2001.

15. Matthias Jarke, Manfred A. Jeusfeld, Hans W. Nissen, Christoph Quix, and Martin
Staudt. Metamodelling with datalog and classes: Conceptbase at the age of 21. In
ICOODB, pages 95–112, 2009.

16. Manfred A. Jeusfeld, Christoph Quix, and Matthias Jarke. ConceptBase .cc User
Manual. Tilburg University, RWTH Aachen, February 2013.

17. William Kelley, Sunit Gala, Won Kim, Tom Reyes, and Bruce Graham. Modern
database systems. chapter Schema architecture of the UniSQL/M multidatabase
system, pages 621–648. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA, 1995.

18. Maximilian Koegel and Jonas Helming. Emfstore : a model repository for emf
models. In ICSE (2), pages 307–308, 2010.

19. Martin Matulla. Netbeans Metadata Repository. 2003.
20. Julio L. Medina, Julio L. Medina Pasaje, Michael Gonzlez Harbour, and Jos M.

Drake. Mast real-time view: A graphic uml tool for modeling object-oriented real-
time systems. In In the 22nd IEEE Real-Time Systems Symposium (RTSS01, pages
245–256, 2001.

21. Sergey Melnik, Erhard Rahm, and Philip A. Bernstein. Rondo: A programming
platform for generic model management. In SIGMOD Conference, 2003.

22. Ilia Petrov, Stefan Jablonski, Marc Holze, Gabor Nemes, and Marcus Schneider.
irm: An omg mof based repository system with querying capabilities. In ER, 2004.

23. Ilia Petrov and Gabor Nemes. A query language for mof repository systems. In
OTM Conferences (1), pages 354–373, 2008.

