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Abstract—Recently, ontologies have been widely adopted by artificial intelligence and the database Consequently, each
small, medium and large companies in various domains. These community has its own interpretation and use of the term
ontologies may contain redundant concepts (computed from “ontology”. Due to this diversity, Jean et al. [4] propose a
primitive concepts). At the beginning of the development of  taxonomy of ontologies, namely the onion model (left part of
ontologies, the relationship between them and the database was the Figure 1). It is composed of three layelisiguistic on-

weakly coupled. With the explosion of semantic data, persistent . . :
solutions to ensure a high performance of applications were toIog@s,conceptu_aI canonicapntologies anchon conceptual
canonicalontologies.

proposed. As a consequence, a new type of database, called
semantic database §DB) is born. Several types of SDB have Linguistic Ontologies(LOs) are those ontologies whose
been proposed and supported by different DBMS, where each  gcope s the representation of the meaning of the words usec
one has its architecture and its storage layouts for ontologies and in a particular universe of discourse, in a particular |aggs

its instances. At this stage, relationship between databases and Beyond the textual definitions, a nL;mber of linguistics +ela

ontologies becomes strongly coupled. As a consequence, several hi h d .
research studies were proposed on the physical design phase of 1ONShips (synonymous, hyponym, etc) are used to captare, i

SDB. To guarantee the similar success that relational databases @n approximate and semi-formal way, the relation between th
got, SDB has to be supported by complete design methodologies Words. LOs may be used to localize similarities betweeneour
and tools including the different steps of the database life cycle. schemas, to document existing databases or to improve ¢ne us
Such methodology should identify the redundancy embedded dialog. Wordnet is an example of such ontologies.

into ontology. In this paper, we propose a design methodology . . .
dedicated to SDB including the main phases of the lifecycle of Conceptual Canonical Ontologig€COs) contain ontolo-

the database development: conceptual, logical, deployment and 9ies which describe concepts of a domain W'thOUt_ sgun- _
physical. The conceptual design o8B can be easily performed ~ dancy CCOs adopt an approach of structuring of information
by exploiting the similarities between ontologies and conceptual in term of classes and properties and associate to theseslas
models. The logical design phase is performed thanks to the and properties a single identifiers reusable in various lan-

incorporation of dependencies between concepts and properties guages. CCOs can be considered as shared conceptual mode
in the ontologies. These dependencies are quite similar to the

principle of functional dependencies defined in the traditional Non Conceptual Canonical Ontologi€dCCOs) represent
databases. Due to the diversity of theSDB architectures and  not only primitive concepts (canonical), but also definite
the variety of the used storage layouts (horizontal, vertical, concepts (non-canonical), i.e. which can be defined from
binary) to store and manage ontological data, we propose &DB  primitive concepts and/or other definite concepts by theaiise
deployment a la carte Finally, a prototype implementing our  expression languages such as OWL and PLIB. NCCOs provide

design approach on Oracle 11g is outlined. mechanisms similar to views in databases. Non-canonical
concepts can be seen as virtual concepts defined from canon
I. INTRODUCTION ical concepts. These mechanisms may be used to represer

Nowadays, ontologies became a complete technology Sur5r_1appings between different databases. Some existingogytol

ported by modeling languages such as OWL (the Semarjnodels provide users with appropriate builders, functiand

: : ; dures to express such definitions. For example, thB PLI
tic Web language designed to represent rich and compleRMOCEUUres . :

knowledge about things, groups of things, and relations bemOdE_’l’_ using th? EXPRESS modeling Iangua_ge, off_ers the
tween things, PLIB [1] (a language for the engineering possibility to define the denvgad data and/or object proesrt
domain), etc., editors (e.g. Pégf), reasoners (e.g., Pellet across functions. OWL uses different constructors to bula-n

[2]), evaluation methods, etc. An ontology is defined bycanonl_cal concepts such as r_estrlctu?ns (e,.g, the Man ctass
Gruber [3] asan explicit specification of a conceptualization °€ defined as all persons having the 'male’ value for the gende
Ontologies’ key benefit is interoperability. They showedith ProPerty) or Boolean operators (e.g., the Human class can be
contributions in various interoperability-sensitive @asch and defined as the union of Man and Woman).

industrial domains such as data integration, semantic Web, From the database point of views, conceptual ontologies
inference engines, semantic indexation, crawlers, datengi  leverage conceptual models proposed by Dr. Peter Chen [5].
etc. Chronologically, ontologies have been adopted byethreRecall that he argued that the world may be represented/mod
main research and industrial communities: timguistic, the  eled by the use of two concepts, named, entity and relatipnsh

Lwww.w3.0rg/2001/sw/wiki/OWL 2http://wordnet.princeton.edu/



P gv o 5 Subject | Predicate Object
o) T Id1 Type Human
N Id1 Name Pierre
7 N LldL | Gender Male
[l | [d1 Birthdate 01/01/1990
\ 3y /[t Type Man
P 1 | Age 23

Instance Level

First cause of Redundancy at

Ontology Definition Level
Fig. 2: Example of redundancy in Semantic Database
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Semantic DB Level
---------------------
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In addition to conceptual models, ontologies brought twinma LoaD :
issues: (1) an ontology may contain non-canonical concepts % """"""""""" > | Fxed storage

(concepts derived from other ones), whereas, a conceptual

model stores only canonical concepts. (2) An ontology effer Fig. 3: Ontology storage i&D5.
the reasoning capabilities. If the second problem has been

solved by using external reasoner or processing the reggoni

with database mechanisms, the first one has been mostly

ignored even if it raises the important issue of introducingof semantic data. To facilitate their managements, perstist
redundancy in the database. The following example illistra sojutions to store and query these mountains of semantic
this type of redundancy. data were proposed. These gave raise to a new type of

Example 1:Let us consider the canonical cla&&uman databases, _Called semantic database®/). Academicians
domain of the propertiesame, gender and birthday. Us- ~ @nd industrials propose a large panoply DB [€], [7],
ing the description logic syntax, the non-canonical clasd8l: [9], [10], [11], [12]. Relationship between ontologi@nd
Man can be defined with an OWL restriction as follow: databases becomes strongly coupled. Three main archésctu
Man = Human M gender : Male The non-canonical of De}ta_basg Management Systems managing such databas
property age can be defined with PLIB derivation function: &'€ distinguished. In the first type (that we callEgpe,), the
age = current_date — birthdate traditional databa_se architecture was re_used to storgaldata
- part both ontologies and data referencing them. This way, th
The Figure 2 presents the storage of the cl&&snman  ontology and its associated data are stored imigue part
in the classical triple table (a direct translation of the RD To make an identified separation between ontology and data,
model). The representation of non-canonical conceptsis th second type (calle@ype,) was proposed where ontology and
table (triples in grey) introduces two anomalies: its ontological data are stored independently itwo different
) ) ) . . schemes Therefore, the management of ontology and data
e if the gender of the instance is modified, the triple parts is different. Thel'ype; and Type, architectures hard-

(Id1, type, Man) becomes incorrect. coded the ontology model (RDF or RDFS, etc.). To enable
e if the birthdate of the instance is modified, the triple the evolution of ontology models, a third database architec
(Id1,age, 23) becomes incorrect. (calledT'ypes) extending the second one by adding a new part,

called themeta-schema panvas proposed [9]. The presence
Thus the identification of non-canonical concepts is cliuciaof the meta-schema offers the following characteristidy: (
for the development of database applications since it exluc a generic access to the ontology part, (2) a support of the
the redundancy and inconsistency of databases constructeded ontology model's evolution by adding non functional
from ontologies. Functional dependency between propgertieproperties such as preferences [13], web services [14], etc
of a given class may also be used to reduce redundancsnd (3) a storage of different ontology models (OWL, PLIB,
As a consequence, dependencies between ontological slassc.).
and properties are critical when designing databases from

ontologies. When ontologies became a part of databases, several re

search efforts were mainly concentrated on the physicagjdes
Initially, the link between ontologies and databases weakl phase, where storage layouts dedicated for ontologies anc

coupled, because ontologies were used at the conceptutileir instances were discussed. Three main storage lagogits

level. The massive use of ontologies generates a big amoudtstinguished: vertical, horizontal and binary. Vertiogbresen-



tation stores data in a unique table of three columns (sybjec  The remainder of this paper is organized as follows. Section
predicate, object) (eg. Oracle [8]). In the binary représon, 2 presents the related works. Section 3 exposes the weal
classes and properties are stored in different tables B¥g. | exploration of ontology characteristics related to depewits
SOR [10]). The horizontal representation translates etadsc relationships. In Section 4, we propose a formalization of
as a table having a column for each property of the class (egntological dependencies a®D5. Our approach exploiting
OntoDB [9]). Note that each storage layout has its advastageconceptual dependencies to improve the semantic databas
and limitations based on the ontological data and the gslerieprocess is given in section 5. Section 6 shows an application
Nowadays, DBMS proposes fixed storage layouts for its differ of our approach to improve th8DB design methodology in
ent components (data, meta-schema, ontology model). In rethe Oracle 11g. Finally, section 6 gives a conclusion andesom
life applications, database administrators may choosttiget  future research directions.

DBMS based on her/his architectures and storage layouts.

Il. RELATED WORK

A. Summary. Since the 70s, the functional dependencies have beer

The main studies iRSPB were mainly concentrated on Wwidely studied in the database theory. These dependencies
the physical phase of database development. This situition usually defined on the attributes, were especially exploite
similar to what we have seen during the development of thén the databases design process. They are used to mode
database technology. When Prof. Edgar Frank Codd proposdlie relationships between attributes of a relation, cosput
his relational model in 70’s [15], the lifecycle of databaseprimary keys, define the normalized logical model to avoid
applications had only two phases: logical and physical @has redundant data, check the data consistency, etc. For the de
In the logical phase, the database schema may be normaliz&@ription logics (DL), functional dependencies have alserb
using the functional dependencies defined on properties te subject of several studies [18], [19], [20], [21], [22],
reduce the redundancy and ensure the quality of the findR3]. In [18], Borgida et al. have expressed the need to add
database schema. In 1975, when Peter Chen proposed hys entifnique constraints for semantic data models, particulemty
relationship model, he contributed in extending the lifdey the description logic, while in [19], the authors studiee th
of databases by adding the conceptual phase. Chen’s wopessibility to make them explicit in this language.
allows database technology to have its lifecycle. As a con-
sequence, several methodologies were proposed accoming dir

this lifecycle: conceptual, logical and physical desigragds. expressive Description Logic with n-ary relations, partcly

We can cite the MERISE method [16], the Unified I:)rocess"suited for modeling database schemas. The resulting Dlectal

the Rational Unified Process, Two Tracks Unified Process, et k. 4, allows one to express these constraints through new
These methodologies were supported by academic and 'nduﬁ‘l'ndstof' assertions in the TBox. For example, a functional

trial tools such as Sybase PowerARM@nd Rational Roge ; . . ;
The. maturity ofSDB tec_hnology requires the development of geEasegdreer?%ois’s;r;logng?i T?Z:?ﬁg?oié’ .é.éaquné)nghg;eR.
design methodologies including different phases of daiaba In [20], Motik et al. showed the role of constraints in the

lifecycle. Recall in traditional databases, usually thatienal ntologies while drawing a comparison between the comgtrai
table layout is advocated when deploying a database whicﬁlI databases and those in ontologies

makes easier the deployment process. Indhd3, the diversity
of storage layouts and the architectures of the target DBMS In [21], [22], the authors were interested in the study of
makes the deployment more complicated. Another aspect thaependency relationships and their implications in ormgigs.
has to be considered is the loading of ontological instancem [22], the authors propose a new OWL constructor to define
into theSDB (Figure 3). This problem is quite similar to ETL functional dependencies. They describe a FD by the follgwin
process (extraction, transformation, loading) [17]. quadrupletf’'D = (A, C, R, f), where:

In [24], the authors exten® LR with identification con-
aints and functional dependencies. Note thatR is an

e A is the antecedent i.e. is a list of paths (A =
{u1,usg,..,u,}). A path u; is in turn composed of

The contributions of our work are: rolesr; (r; (wi={ri,1,ri2, -, Tin})-
C is a consequent composed by a single path (C =

B. Outline and Contribution

e The identification of the causes of redundancies and

inconsistencies o§ DB which represent the presence {ud).
of the non-canonical concepts in ontologies and de- e R is a root concept representing the starting point of
pendencies between properties. all paths in the antecedent and consequent.

e The proposition of a formal model for describing con- e  f a deterministic function which takes as parameters
ceptual ontologies embedding dependencies between the ranges of the last roles of the antecedent paths.

their concepts and properties. ) .
. These dependencies are then translated into a set of SWRI
e The presentation of a complete methodology for deyyles for the reasoning process.

signing SDB, where deployment (including ETL) is

ensured through services. In [21], the authors propose an approach to define func-
tional dependencies for a domain ontology based on the
3http:/Avww.sybase.com/products/modelingdevelopmentépamc concepts and roles defined in such ontology. They propose

“hitp://www-01.ibm.com/software/awdtools/developeréios an algorithm for the identification of a set of FD exploiting



the capabilities ofD L1 ;.4 reasoning. Note that thB Ly ;.4 These derived definitions may be characterized as algebraic
is a variant of the DL-Lite family which is a new description An algebraic concept definition is a non-canonical definitio
logic specially adapted to capture basic ontology langsiagethat can be computed with the use of algebraic operators
The proposed algorithm computes (i) a set of functionalsuch as the composition, union, intersection, restristiaic.
dependencies between ontological classes and (ii) thsitiken  while a structural non-canonical concept definition cassis
closure. Romero et al. [21] introduce a functional depengen in defining and deducing a notion without using algebraic
as a relationship between classes. For two coneggpendCs, operators.

the authors established that each instance C; determines
a single instance o’y if (1) there exists a functional role
(r;) valued fori; and (2)r; connectsi; to a unique instance

of C5. This dependency relationship is denoted®y — Cs. [0 minor) andcountry of the classStudent of the ontology

These dependencies are then exploited during the data wa X 1 . ; ;
house design process to make the logical schema deﬁnitioﬁf Lehigh Unlve(S|ty benchmafk(Figure .4)' This ontology .
automated. Is used along this paper. These properties have as a domai
the Student class and as a range an integer, a date or a
In parallel, semantic databases, storing in the same reposstring, respectively. Assuming that the birttate is a prim-
tory ontological data and the ontology describing their mea itive property, therefore, the property age is consideredaa
ings, have been introduced. To support such a databasealsevenon-canonical algebraic property since it computed from th
architectures have been proposed [6], [7], [8], [25], [101], birth_date and the current date. Based on this definition, the
[12]. They have been mainly focused on the scalability o$¢he functional dependency between the properties bitdte and
databases. Considering the support of ontology, e8€¥#8  age firthdate — age) can be defined.
supports the semantics of a given ontology model using hard
coded techniques either by using database mechanisms or R¥]
relying on an external logical engine. Therefore, 8125 may
contain anomalies like redundant and inconsistent data. F
example, let us assume that the individdalis instance of

C1 and C». Considering the storage process, description Example 3:The object propertyteachesdescribes a bi-
is duplicated in theSDB and a redundancy case is raised.nary relation betweerProfessor and Course classes. Data
Unfortunately, there is no available methodology dediddte  properties can be primitive or derived (computed from
the SDB design and avoiding these anomalies. the primitive and/or defined object properties). Let us

To summarize, we can easily say that studies on ontoIogicag;cms'd('lr the propertiesicadOf, headO fpepartement and
functional dependencies have been mainly focused on sbject?¢"¢7alHeadO funiversivy describing respectively the fact
properties (properties relating concepts to concepts)thén ©f Peing a headmaster, a department headmaster and a un
other word, functional dependencies are defined at theagyol Versity general headmaster. The third property can be de-
level. A few studies on dependencies between data propertidlVed from the first two ones({eneralHeadOf = headO f
(properties having as a range a simple type) and the defingtl /€440 fDepartement) SiNCE @ university general head-
classes exist. One of the main objectives of our paper is tgiaster is the headmaster of a departement headmaste
study the characteristics of ontologies in order to idgrdié- S & consequence, a dependency relationshipadO,
pendencies between properties and classes and exploitthem/?¢440 fDepartement — GeneralHeadOf) can be identified

propose a consistedDB. Such characteristics are describedP€tWeenicadO f, headO fpepartement @nd the non-canonical
in details in the next section. algebraic propertyreneral HeadOf.

Example 2:For a better understanding, let us consider
the data propertieSSN (describing social security number),
birthdate age Student;...s (describing if a student is major

2) Dependency relationships between object properties:
object property is a binary relation between two indiatiu
delonging either to the same ontological class or to two
different classes.

[Il. W EAK EXPLORATION OF ONTOLOGY FEATURES B. Dependency relationships between classes

A long this paper, we concentrate on conceptual ontologieds we said in the Section 1, an ontology may have two
that offer two types of dependencies: (i) the dependencyypes of classes: the canonical (primitive) classes andidine
relationships between the ontological properties andtfi@ canonical (defined) ones. The derived classes may be otafsifi

dependency relationships between ontological classes. in algebraic concepts or structural ones.
) ) . In the first case, classes are defined as class expression
A. Dependency relationships between properties based on set operators and/or property restrictions( —,

In an ontology, two types of properties are distinguished:3: V. €tc.). For example, let us assume that a data property
(1) the data properties that link individuals to data values®tatusuniversity describing the status of a university (public
and (2) the object properties that connect individuals teept ©OF Private) has as a domain the primitive concepiiversity
individuals. By examining existing ontologies, we obsetivat describing all the universities. APublicUniversity class
the property definiton may be expressed in terms of othethat _sp_ecmes the public un|v§r5|t|¢s may be defined as the
properties. Therefore, dependency relationships mayisedta  restriction on the property/niversitysiatus 0N the public
This section studies dependency relationships betweem dayalue (PublicUniversity = 3 Universitysasus-{public}
properties and object properties. and domain Universitysiatus) = University). Based on
this definition, a class dependency may be identified as

1) Dependency relationships between data properti®s:  follows: University — PublicUniversity. It means that
definition of a data property may be expressed from other-prim

itives and/or defined data properties sharing the same @omai Shttp:/swat.cse.lehigh.edu/projects/lubm/
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University ontology.

the knowledge of the whole instances of theiversity ~ A. A formal model of ontologies

class determines the knowledge of the whole instances of the

PublicUniversity concept. Th

e existing formalization of ontologies ignore the de-

pendencies that may exist between classes and propertie

[26]. In this section, we propose a complete formalization
In the second case, classes are expressed using a direftconceptual ontology. Therefore, an ontology becomes a 7-
enumeration of its members. For a better understanding, léuple O:(C, R, Ref(C), Ref(R), FD(R), FD(C), Formal),
us consider this example. LefharenteUniversity con-  where:

cept be the class describing the universities located at the
Charente department (in France). It is defined as one of ¢
the following University instances: Poitiers UniversitgN-

SMA, Angouleme University, ENSIPQharenteUniversity .
= oneOf {PoitiersUniversity, ENSMA, AngoulemeUniver-

sity, ENSIP}). Therefore, the”harenteUniversity definition
depends on the University instances definition since thavkno

edge of the whole instances of the enumareted universities
determines the knowledge of the whole instances of the e
CharenteUniversity.

Ontology models provide the means to define derived classes.
For example, the PLIB [1] model allows the definition of

the derived classes across basic set operators, functiwhs a
enumeration. In OWL, various builders are given to define
such classes (owl:unionOf, owl:intersectionOf, owl:haisié,
owl:oneOf, etc.). 4

C. Synthesis

Our study shows that ontology models allow defining con-
cepts and properties with dependencies. But, some furaition
dependencies among properties cannot be captured by these
definitions. Let us consider the SSN property. Knowing a
student SSN allows identifying exactly other data property
values. To offer designers the means to express such de-
pendencies and to define explicitly conceptual dependgncie
we propose to extend the expressive power of ontologies by
incorporating these new concepts in the ontology models. In
the next section, we propose a formal model of ontologies
considering dependencies between ontological propeaties
classes.

IV. FORMALIZATION

In this section, we first propose a formal model of ontolo-
gies followed by a formalization of semantic databases. .

C denotes concepts of the model (atomic concepts and
concept descriptions).

R denotes roles (relationships) of the model. Roles can
be relationships relating concepts to other concepts,
or relationships relating concepts to data-values (like
Integer, Float, String, etc).

Ref(C): C — (Operator, Exp(C, R)). Ref(C) is a
function defining classes of the DL TBOX. Operators
can be inclusion €) or equality €). Exp(C,R) is
an expression over concepts and roles(fusing
constructors of description logics such as union, in-
tersection, restriction, etc.(e.g, Ref(Professer|C,
Personmn V givesCourse(Person, Course))).

Ref(R): R — (Operator, Exzp(C, R)). Ref(R) is

a function defining roles of the DL TBOX. Op-
erators can be inclusionC) or equality E).
Exp(C,R) is an expression over concepts and
roles of @ using constructors of description log-
ics such as union, intersection, restriction, etc.(e.g,
Ref(GeneralHeadOf) — (=, (headOf(Person, Per-
son)o headObepartement (PErson, Department))).

FD(R): C x 2% — R a mapping from the powerset
of R onto R representing dependencies defined on the
applicable roles® of a classC; € C. A FD(R) is de-
fined as a paif’D(R):< FD(R).RP,FD(R).LP >
where:
o FD(R).RP is arole R describing the depen-
dent attribute of the role functional dependency
(right part) i.e. FD(R)(C;, (Ry, .., Rn));
o FD(R).LP is a powerset of? describing the
determinant set of the role functional depen-
dency (left part) i.e. doma{# D(R) (C;));

FD(C) a mapping from the powerset af' onto



C representing class dependenciesFA(C) is de-
fined as a pait"D(C):< FD(C).RP,FD(C).LP >
where:
o FD(C).RP is a clasg describing the depen-
dent class of the class dependency (right part)
i.e. FD(C)((C1,..,Ch));
o FD(C).LPis apower set o€ describing the
determinant set of the class dependency (left
part) i.e. domaitF"D(C));

Formal is the formalism followed by the ontology
model like RDF, OWL, PLIB, etc.

B. Semantic database formalization

Since ontology is a part of &DB, a formalization of such
database becomes necess&®J5 is then defined as a 8-tuple
SD:(IM,I,Pop,SMyp, SMy, Ar, Rel, RS).

IM is the information model of the source. It de-
scribes a fragment of the ontology that defines the
user requirements. Three scenarios may occur:

o IM C O means thaO is rich enough to cover
the user requirements;

o IM = O means that covers all the designer
requirements;

o IM D O means thatO does not fulfill the
whole designer requirements. The designer ex-
tracts from the® a fragment corresponding to
the requirements and enriches it by adding new
concepts/properties/dependencies to define the

I presents the instances or data of the source;

Pop: C — 2! is a function that relates each concept
to its instances;

S My is the storage model of the information model
(vertical, horizontal, binary);

SM;y is the storage model of the instance pArt
Ar is the architecture model of the source;
Rel presents the relations (tables) for instances store;

RS: C — 2F¢l js a function that relates each class to
its relations;

C. Instantiation of the Semantic Database Model

To instantiate the above model, let us consider an ex-
tended fragment H;;;0) of the Lehigh University ontology
benchmark LU®) as shown in Figure 4, where some classes

and dependencies are added. For example, a dependency

between the classes Student and Master Studghaiént —
Master Student) is defined, since thé/asterStudent class

may be expressed as a student with a master value (Mas-
terStudent= 3 level.Master; Domain(level) = Student). The
dependencyidUniv — name meaning that the university
identifier ¢dUniv) determines the university nameaime) is

an example of dependencies defining on role of the Universit)/el

class.

an academic DBMS which is OntoDB.

are

a) Oracle DBMS: The different components a$DB

(IM = Fr0)D0 sinceFro = fragmentQ) U C U
R U FD(C) U FD(R);

I presents the F 0 instances. For example,
the triplets (University#1, type, University)

(University#1, idUniv, 'M50421") describe that
University#1, instance of University class, has
'M50421’ as an identifier value;

For eachC; € Cyy, Pop(C;) is defined. If we
consider the University class, Pop(University)
= {University#1, University#2,...,
University#100};

Oracle uses a vertical representation to store its infor-
mation system;

A vertical table is used to store instances. Note that
this table store botd M and I;

Oracle has &'ype; architecture (two parts: meta-base
and data);

Since Oracle uses vertical representation, a unique
table is created,;

RS = ¢.
b) OntoDB DBMS:

IM = Fypo;

1 presents thé; ;o instances.

As in Oracle, Pop(University)={University#1,
University#2,..., University#100};

OntoDB uses the hybrid storage layout;

OntoDB uses the horizontal representation to store its
instances;

OntoDB has dl'ypes architecture (four parts: meta-
base, ontology, meta-schema and data);

Since OntoDB uses the horizontal representation, a
table is generated for each class. Therefdge] =

{RelUniversityy RelStudenty RezProfessor: RelCourse;
RelPersony etC.}

A relation Rel; is generated for eact; € C. Note

that the class and its associated relation has the same
name in OntoDB. Thus, RBY) = Rel¢,. For example,
RSUniversity) = Relyniversity SiNCe a table Uni-
versity is generated and associated toltth@versity
class.

V. DESIGN OFCONSISTENT SEMANTIC DATABASE

LOGICAL MODELS

In this paper, we are interested in exploiting dependency

ationships between ontological concepts to improve the

SDB design process. Inspired from relational database design
We consider two examples of instantiation of our model[27], we propose to incorporate dependency relationships i
by considering one commercial DBMS which is Oracle andthe SD5 design process in order to (1) reduce redundancy by

generating a normalized logical model, and (2) improve the
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Fig. 5: Semantic database design approach

database quality by detecting the inconsistent data caboged
the violation of integrity constraints identified from deylen-
cies definitions.

Therefore, we propose our methodology to desifi3
with good quality. Our methodology has the following steps
(Figure 5):

1)

2)

3)

4)

5)

Definition of Conceptual Model: the designer de-
fines the conceptual model by extracting a fragment 6)
of the used ontology according to her/his require-
ments

Identification of Canonical Concepts: as we said

in the previous sections, the exploitation of depen-
dencies between classes facilitates the identification
of canonical and non-canonical classes. To do so, we
propose a graph structure. It is built fromD(C'),
where its nodes represent the ontology classes. An arc
exists between two nodes andn; if a dependency
exists. This graph is then used as the input of our
proposed algorithm to determine the minimum set
of canonical concepts(JC) and generates the set
of non-canonical conceptsMCC). This algorithm
starts by computing the isolated classes (classes not
involved in FD(C)). Note that these classes will be
canonical since they can not be derived from other
ones. Then, the minimum coverage-like classes (C+)
is computed. It represents the minimum subset of
basic FD(C) to generate all the others. C+ has to
be treated so as to eliminate circular relationships
between classes. Finally, the set of CC is identified
and a consequence, the set of NCC is deduced. Recall
that this identification contributes in reducing the
redundancy in the finaDB5.

Generation of a Normalized Logical Schemafor
each canonical class; € CC, we exploit the FD(R)
defined on their properties to generate the normalized
logical model. Note that, for eacfe; , a primary key

is computed and relations in 3NF are generated.
Hiding the physical implementation: to facilitate

the user access, we define a view on the normalized
relations corresponding to each canonical class. So,
the users may query t&D B without worrying about

the physical implementation of those classes.
Access Support to non-canonical classeso en-
sure the transparency in accessing data through non-
canonical classes and reduce redundancy in the target
SDB, we propose the use of views. For eagh; €

canonical classes:;(r1, 72, r3) andcc2(rl, r2, rd)
where {r1, 72, r3, r4} C R, a view corresponding
to nce; is defined as illustrated in the Listing 1.

Listing 1: Example of a relational view definition

CREATE VIEW nccj AS
((SELECT r1, r2 FROM ccl) INTERSECT
(SELECT r1, r2 FROM cc2))

Deployment: Due to multitude choices of architec-
tures of the target DBMS and storage layouts, the
deployment process become more harder than the
classical databases. To illustrate this difficulty, let us
study its complexity. Letd = {4, A5, .., A}, P =

{Pl, PQ, . Pn} and SM = {S]V[l, SMQ, e SMn}

be the set of all possible architecture types, set of
various needed parts according to the design approach
and the set of existing storage models. The number
of deployment possibilitie® that designer needs to
consider is given by the following equation:

D = card(A) x (card(SM))CMd(P)). (1)

Our analysis on databases architectures [25], [28], [9],
[29], [7] gives rise to three main architectures. Each
identified architecture may have at most four parts:
meta-base, meta-schema, ontology and data. Accord-
ing to the previous steps, the designer have to deploy
only in three parts: the meta-schema part to store the
extended ontology model (supporting dependencies
definition and classes types), the ontology part to
store ontology definition and the data part to store
the generated logical model and ontological data.
Note that three main storage models may be used
for each one of these parts as follows [11$M{;)
vertical table, §Ms) horizontal representation and
(SMs) binary representation. Therefore, the deploy-
ment complexity is equal t®(3 x (3%)). Studying

81 cases becomes a difficult task.

The designer is constrained to consider a significant
number of choices. This makes the deployment pro-
cess more complex. To overcome this situation, the
SDB deployment process must be done in a generic
way. For that reason, we propose a deployment on
demand implemented as a service which follows the
standards such as WSBLSOAF and UDDI.

Based on the different parts (DB architectures,
three kinds of deployment services are identified:

NCC, a relational view is computed. For example, let

Shttp://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

ncc; be a NCC defined as the intersection of the two  "http:/Aww.w3.org/TR/wsdl
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Fig. 6: Deployment ofSDB5 as a Service.

(1) a service concerns the meta-schema level, (2)
a service dedicated to the ontology level and (3) a
service for the data level. Note that &DB may
materialize ontological data that come from various
sources (Web, files, databases, etc.) with different
formats. A similar ETL service has to be developed
to clean, transform and load data into t§®5. [17]
defined ten generic operators typically encountered in
an ETL process, which are:

saved in a temporary file generated into OntéML
format (Ontology Mark-up Language) which allows
ontologies representation and exchange. The OntoML
file is used as a generic format of semantic data
exchange, transformed according to the format of the
target schema (vertical, horizontal, etc.) and loaded
into the SDB. Figure 6 illustrates the deployment
process.

Algorithm 1 shows an implementation of our ETL operators.
A validation of our approach is proposed in the next

A CASE STUDY
A case study implementing the propos&®B design

database is justified by the leading position that has Oracle
11g in the database area. To lead our validation, we use ar

in Figure 4. The validation process contains two main stéips:
the design step and (2) the deployment step where a services

The design stage requires the execution of a set of steps
as follows: (1) the OWL meta-schema extension, (2) the
primary key computation, (3) the analysis of classes and (4)

a) EXTRACT (S,C)extracts, from incoming
record-sets, the appropriate portion. section.
b) RETRIEVE(S,C)retrieves instances associ-
ated to the clas§’ from the sourcesS. VI
c) MERGE(S,I) merges instances belonging to '
the same source.
d) UNION (C,C’) unifies instances whose cor- approach in Oracle 11g is proposed. The choice of this
responding classe§ and C’ belong to dif-
ferent sourcess and S’.
e) JOIN (C, C') joins instances whose corre- extended fragment of the Lehigh University ontology as show
sponding classe€’ and C’ are related by a
property.
f)  STORE(S,C, i)oads instances correspond- based case tool is proposed.
ing to the clasg” in a target data stor§.
g) DD(l): detects duplicate values on the incom- A, The design step
ing record-sets.
h) FILTER(S,C,C) filters incoming record-
sets, allowing only records with values of the
element specified by C'.
i)  CONVERT(C,C%converts incoming record-

the conversion of the OWL ontology to a N-Triple format.

sets from the format o’ to the format of 1) The OWL Meta-schema extensioBince the used on-

c'. ) tology language does not handle dependencies representati
AGGREGATE (F, C, C!) aggregates in- we propose to extend the OWL meta-schema by adding the
coming record-sets applying the aggrega-following meta-classes: FD(R), FD(R).RP, FD(R).LP, FQ(C)
tion function 7 (e.g., COUNT, SUM, AVG, FD(C).RP and FD(C).LP. These meta-classes describe respec
MAX) defined in the target data-store. tively a functional dependency defined between propetiies,
right part, its left part, a class dependency, the FD(C)trigh

For our case, all these operations are considereflart and the FD(C) left part. For each added meta-class, a

except the aggregation operator.

The data are then extracted from different sources, 8http://wiki.eclass.eu/wiki/lSO13584-320ontoML



begin

Input: SDB (the schema only) and Sources) (

Output: PopulatedSDB (schema + instances)

for Each C : Class of ontologgo

Ispp = ¢

for Each sourceS; € S do

if Cs=C /* instances in S;

satisfying all constraints

i mposed by SDB+/ then

| C" = IdentifyClasse(S;,C)

end

else

if Csc C /+Instances in Si

satisfy all constraints

i nposed by SDB, plus

addi ti onal ones */ then

| C’= IdentifyClasse (Si, C)

end

else

if Cso C/* Instances

satisfy only a subset of

constraints inposed by

SDB*/ then

if format(C) # format(Cs)then
C'= CONVERT (C, Cs)
/+xidentify the
format conversion
fromthe source to

the target SDB+/
end

if C represents filter constraint
then
C’= FILTER (S;, C, Cs)
/+identify the
filter constraint
defined in the

target SDB=*/
end

end
end
end
I;; = RETRIEVE(S;,C) | *Retrieve
i nstances of Cx/
if more than one instance are identified in
the same sourcthen
‘ Ispp= MERGE (sp3, 1) / *Mer ge
Oli nst ances of Si*/
en

if more than one instance are identified in
different sourceshen

Ispp= UNION (ISDBa Isi) [*Unites

i nstances inconming from

di fferent sourcesx/
end

end

if Source contain instances more than needed
then

Ispp= EXTRACT (ISDBs IM) [ *

Extract appropriate

i nst ancesx/

end

end

STORE(SDB,C, DDI[sppg)) / *Det ect s
duplicate; |oads themin SDB+/

end

Algorithm 1: ETL operators

set of meta-properties is defined. For example, IteClass
meta-property references the meta-class to which the FB(R)
associated. These dependencies may be exploited to comput
the types and the primary keys of classes. So, to represen
such a data, we propose to enrich the OWL meta-model by
adding the meta-classes PrimaryKey, NonCanonic and Canoni
describing respectively the primary key concept and thewcan
icity of classes. A set of meta-properties is associatech¢o t
PrimaryKey meta-class: the PK.class references its agsaoci
class while the PK.prop describes the set of the properties
composing this key. Figure 7 shows a fragment of the UML
model describing the extended OWL meta-model.

2) Compute primary keysTo compute the appropriate
primary key for each ontological class, we exploit the FD(R)
defined on the properties of each class. To do so, we apply &
java program that we have developed, on the extended OWL
ontology. Based on the FD(R), this program computes and
associates a primary key for each ontological class. To lead
our validation, we use an extended fragment of the Lehigh
University ontology as shown in Figure 4. Let us assume that
the idUniv property that describes the university identifier
is generated as the primary key of tliéniversity class.
Therefore, this step triggers the meta-schema instaortidty
adding the appropriate ontological data in the University.
file to define the generated primary key as described in the
Listing 2.

Listing 2: Example of the meta-schema instantiation

<PrimaryKey rdf:ID="PrimaryKey_10">
<PK.prop rdf:resource="#idUniv"
<PK.class rdf:resource="#University¥
</PrimaryKey >

Once the primary keys are computed, an analysis to identify
canonical and non-canonical classes is performed as Hedcri
in the next step.

3) Analysis of classesTo identify the types of classes, we
apply a java program, exploiting the class dependencietien
the Lehigh University ontology. Once the canonical and non-
canonical classes are identified, we instantiate the nottanse
classes Canoni¢ and "NonCanonit by generating the owl
statements describing the classes types definition. Fi§ure
illustrates the class analysis process of the used ontology

4) Ontology conversion:Oracle 11g offers only the data
loading under the N-TRIPLE format (.nt). To meet this re-
quirement, we use the convertelfcat provided by the Jena
API (version 2.6.4) as shown in Figure 9. This tool enables th
transformation of an OWL file (.owl) to a N-TRIPLE file (.nt).
For example, the Listing 3 describes the instruction altavi
the transformation of the Lehigh University ontology frohet
OWL format to the N-TRIPLE format.

Listing 3: Conversion of the Lehigh University ontology

C:\ programs Jena—2.6.4>java jena.rdfcat—out ntriple
University .owl > University . nt

By this conversion, the OWL statements defining the
primary key idUniv of the University class (see previous
paragraph) are transformed into a set of triplets as dexstrib
in Listing 4.
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Fig. 7: OWL meta-schema extension.
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Fig. 9: Conversion of an OWL ontology to N-Triple ontology.

Listing 4: Example of the primary key conversion

(PrimaryKey 10, type,
(PrimaryKey 10, PK.prop,

PrimaryKey)
idUniv)

Once the ontology conversion is done, the deployment step
is applied as described in the next section.

B. OntoDep: a services-based case tool

In this section, we propose a service-based case tool en-
abling the deployment of our approach 8®5. The proposed
tool is implemented in Java language and uses OWL API
to access ontologies. Each service mentioned in section V
is implemented as a Web Service. According to the chosen
architecture and storage layout, the appropriate Web &ervi
is invoked via SOAP messages.
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2) The Ontology deploymentOnce the meta-schema is
The deployment process is performed by invoking thedeployed, the ontology has to be loaded. To do so, we invoke
suitable Web Service that translates the semantic datdherei the ontology deployment service. Firt, we specify the agyl
a vertical, horizontal or binary representation, by getiega deployment characteristics: ti&D3 architecture (Typg and
XML files. The data loaded into our database are issuethe used storage model (vertical table). Then we load the ap-
from sources. As a consequence ETL operators (Extracpropriate file describing the used ontology (University.ihis
Filter, Convert, Merge, etc.) have to be implemented usindoading involves the storing of classes, properties, cptsce
the appropriate ontological language (SPARQL for verticalhierarchy, conceptual dependencies, primary keys andedas
representation, OntoQL for Horizontal, etc.). During thisp,  types. The Figure 11 illustrates the invoking of the ontglog
the implemented ETL algorithm is executed in order to extracservice.
semantic data from XML files, to transform and to load them
into the targetSDB. The description of each Web Service is  3) The Data deploymentTo deploy data on th&DB, the
implemented in a WSDL file. data deployment service is invoked. First, we specify tha da
deployment characteristics: ti&D5 architecture (Typg and
Our tool is implemented so that technical details are hiddethe used storage model (vertical table). Then, the ETL m®ce
to the user. Access to the persistent storage is implementesl applied. It consists in extracting instances from therip@
using Data Access Object (DAO) Design patterns [30]. Thdfile, filtering them, converting these instances accordinthe
DAO pattern provides flexible and transparent accesses t8DB schema, merging instances related to the same classe
different storage layout. Based on the architecture of theind loading them into Oracle 11g. The Figure 11 illustrates
SDB, the right object DAO is selected. In order to obtain the invoking of the ontology service. The demonstratiorewid
a generic deployment process, our solution follow a servicdllustrating the deployment process8D23 is available at http:
oriented architecture (SOA). SOA offers the loose coupling/www.lias-lab.fr/forge/rcisvideo/video.html.
of the defined Web Services and interaction among them. It
allows the integration of new web services without affegtin
the existing one. This provides the flexibility of the depiognt
process. To deploy our approach on Oracle 119, three maig. Synthesis
steps are required as follows: (1) the meta-schema deplayme

(2) the ontology deployment and (3) the data deploymenteNot | the most semantic databases, storage layouts are frozer
that Oracle 1lg IS Typel architecture and uses the vertical For examp'e’ in Oracle 1lg, the vertical representation is
table as a storage model for all types of data. used for the storage of ontological concepts and instances
Therefore, our approach may be improved to consider all
1) The meta-schema deploymef@tracle 119 offers several possible combinations of storage layouts. Indeed, basedeon
techniques for the loading: (i) the bulk load, (2) the batchclass dependencies, the class’s types are identified aretisto
load and (3) a load into tables using SQL INSERT statementsn the ontology-based data models. The property functional
We chose the first method for its fast loading. It loads thedependencies modeling allows computing primary keys for
ontological data in a staging table using the SQLLoadeityitii each ontological class and subsequently, storing themen th
(sqlldr) before being sent to the database. Since our desighDB. Based on these keys, rules helping to detect a set of
approach requires the ontology meta-schema extensiodgethe inconsistent data may be defined. Therefore, the data yualit
ployment meta-schema service is invoked. This servicendste may be improved by detecting a set of inconsistent and
the usedSDB meta-model by adding the needed meta-classeduplicated data violating these integrity constraintsug;hex-
and meta-properties to handle dependencies and canonicipjyoiting dependencies ensures that the stored data corrdsp
representations. The Figure 10 illustrates the invokinghef to the boundaries of the modeled universe and reduces the
meta-schema service. inconsistency and redundancy in the semantic databasdsnode



VII. CONCLUSION [10]

This paper shows the need to develop a complete method-
ology for designing consistent semantic databases ingudi [11]
the main steps of database lifecycle: conceptual, logdals-
ical and deployment. This is motivated by the spectacular
development of academic and industrial solutions to su:ppor[12
such databases. We tried to show #te®ng couplingbetween
ontologies and databases and to highlight ontologies in thﬁs]
design process of databases. In the past ontologies wede use
in the conceptual level of the database development. If we
accept to push them along all steps of the lifecycle, we neefl4]
to give database designers algorithms and tools to identify
redundancy. Considering all ontological concepts (caraini
and non-canonical) may cause inconsistent databasesoitb av (15]
this situation, we proposed to enrich the traditional daéni
of ontologies with dependency relationships between prop[—161
erties and classes of the ontology. Precise formalizat@ins [17]
ontology and semantic databases is given including diftere
components (classes, properties, storage models forogpytol
and instances, architecture of the target DBMS, dependency
between classes and properties). The presence of funictionas]
dependencies between properties allows generating niaedal
logical model. A graph-based algorithm is proposed to ifient
the canonical concepts of a given conceptual ontology. & heﬁ19]
concepts are stored into the database in normalized fore. T
non-canonical concepts are represented by relationalsview
Our approach offers a deploymeatla carte based on Web
Services including ETL process. A case tool dedicated to thé&O0]
deployment process is proposed considering semantic ©racl
DBMS.

[21]

Currently, we are developing a design tool in order to
assist designers during ti#DB design process. Also, we are
working in proposing cost models evaluating the cost foheac
deployment instances.

[22]

[23]
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