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Abstract—Recently, ontologies have been widely adopted by
small, medium and large companies in various domains. These
ontologies may contain redundant concepts (computed from
primitive concepts). At the beginning of the development of
ontologies, the relationship between them and the database was
weakly coupled. With the explosion of semantic data, persistent
solutions to ensure a high performance of applications were
proposed. As a consequence, a new type of database, called
semantic database (SDB) is born. Several types ofSDB have
been proposed and supported by different DBMS, where each
one has its architecture and its storage layouts for ontologies and
its instances. At this stage, relationship between databases and
ontologies becomes strongly coupled. As a consequence, several
research studies were proposed on the physical design phase of
SDB. To guarantee the similar success that relational databases
got, SDB has to be supported by complete design methodologies
and tools including the different steps of the database life cycle.
Such methodology should identify the redundancy embedded
into ontology. In this paper, we propose a design methodology
dedicated to SDB including the main phases of the lifecycle of
the database development: conceptual, logical, deployment and
physical. The conceptual design ofSDB can be easily performed
by exploiting the similarities between ontologies and conceptual
models. The logical design phase is performed thanks to the
incorporation of dependencies between concepts and properties
in the ontologies. These dependencies are quite similar to the
principle of functional dependencies defined in the traditional
databases. Due to the diversity of theSDB architectures and
the variety of the used storage layouts (horizontal, vertical,
binary) to store and manage ontological data, we propose aSDB

deployment à la carte. Finally, a prototype implementing our
design approach on Oracle 11g is outlined.

I. INTRODUCTION

Nowadays, ontologies became a complete technology sup-
ported by modeling languages such as OWL (the Seman-
tic Web language designed to represent rich and complex
knowledge about things, groups of things, and relations be-
tween things1, PLIB [1] (a language for the engineering
domain), etc., editors (e.g. Protéǵe), reasoners (e.g., Pellet
[2]), evaluation methods, etc. An ontology is defined by
Gruber [3] asan explicit specification of a conceptualization.
Ontologies’ key benefit is interoperability. They showed their
contributions in various interoperability-sensitive research and
industrial domains such as data integration, semantic Web,
inference engines, semantic indexation, crawlers, data mining,
etc. Chronologically, ontologies have been adopted by three
main research and industrial communities: thelinguistic, the

1www.w3.org/2001/sw/wiki/OWL

artificial intelligence and thedatabase. Consequently, each
community has its own interpretation and use of the term
”ontology”. Due to this diversity, Jean et al. [4] propose a
taxonomy of ontologies, namely the onion model (left part of
the Figure 1). It is composed of three layers:linguistic on-
tologies,conceptual canonicalontologies andnon conceptual
canonicalontologies.

Linguistic Ontologies(LOs) are those ontologies whose
scope is the representation of the meaning of the words used
in a particular universe of discourse, in a particular language.
Beyond the textual definitions, a number of linguistics rela-
tionships (synonymous, hyponym, etc) are used to capture, in
an approximate and semi-formal way, the relation between the
words. LOs may be used to localize similarities between source
schemas, to document existing databases or to improve the user
dialog. Wordnet2 is an example of such ontologies.

Conceptual Canonical Ontologies(CCOs) contain ontolo-
gies which describe concepts of a domain without anyredun-
dancy. CCOs adopt an approach of structuring of information
in term of classes and properties and associate to these classes
and properties a single identifiers reusable in various lan-
guages. CCOs can be considered as shared conceptual models.

Non Conceptual Canonical Ontologies(NCCOs) represent
not only primitive concepts (canonical), but also definite
concepts (non-canonical), i.e. which can be defined from
primitive concepts and/or other definite concepts by the useof
expression languages such as OWL and PLIB. NCCOs provide
mechanisms similar to views in databases. Non-canonical
concepts can be seen as virtual concepts defined from canon-
ical concepts. These mechanisms may be used to represent
mappings between different databases. Some existing ontology
models provide users with appropriate builders, functionsand
procedures to express such definitions. For example, the PLIB
model, using the EXPRESS modeling language, offers the
possibility to define the derived data and/or object properties
across functions. OWL uses different constructors to build non-
canonical concepts such as restrictions (e.g, the Man classcan
be defined as all persons having the ’male’ value for the gender
property) or Boolean operators (e.g., the Human class can be
defined as the union of Man and Woman).

From the database point of views, conceptual ontologies
leverage conceptual models proposed by Dr. Peter Chen [5].
Recall that he argued that the world may be represented/mod-
eled by the use of two concepts, named, entity and relationship.

2http://wordnet.princeton.edu/



Fig. 1: Redundancy caused by Ontologies

In addition to conceptual models, ontologies brought two main
issues: (1) an ontology may contain non-canonical concepts
(concepts derived from other ones), whereas, a conceptual
model stores only canonical concepts. (2) An ontology offers
the reasoning capabilities. If the second problem has been
solved by using external reasoner or processing the reasoning
with database mechanisms, the first one has been mostly
ignored even if it raises the important issue of introducing
redundancy in the database. The following example illustrates
this type of redundancy.

Example 1:Let us consider the canonical classHuman
domain of the propertiesname, gender and birthday. Us-
ing the description logic syntax, the non-canonical class
Man can be defined with an OWL restriction as follow:
Man ≡ Human ⊓ gender : Male The non-canonical
property age can be defined with PLIB derivation function:
age = current date− birthdate

The Figure 2 presents the storage of the classHuman
in the classical triple table (a direct translation of the RDF
model). The representation of non-canonical concepts in this
table (triples in grey) introduces two anomalies:

• if the gender of the instance is modified, the triple
(Id1, type,Man) becomes incorrect.

• if the birthdate of the instance is modified, the triple
(Id1, age, 23) becomes incorrect.

Thus the identification of non-canonical concepts is crucial
for the development of database applications since it reduces
the redundancy and inconsistency of databases constructed
from ontologies. Functional dependency between properties
of a given class may also be used to reduce redundancy.
As a consequence, dependencies between ontological classes
and properties are critical when designing databases from
ontologies.

Initially, the link between ontologies and databases weakly
coupled, because ontologies were used at the conceptual
level. The massive use of ontologies generates a big amount
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Fig. 2: Example of redundancy in Semantic Database

Fig. 3: Ontology storage inSDB.

of semantic data. To facilitate their managements, persistent
solutions to store and query these mountains of semantic
data were proposed. These gave raise to a new type of
databases, called semantic databases (SDB). Academicians
and industrials propose a large panoply ofSDB [6], [7],
[8], [9], [10], [11], [12]. Relationship between ontologies and
databases becomes strongly coupled. Three main architectures
of Database Management Systems managing such databases
are distinguished. In the first type (that we calledType1), the
traditional database architecture was reused to store in the data
part both ontologies and data referencing them. This way, the
ontology and its associated data are stored in aunique part.
To make an identified separation between ontology and data, a
second type (calledType2) was proposed where ontology and
its ontological data are stored independently intotwo different
schemes. Therefore, the management of ontology and data
parts is different. TheType1 and Type2 architectures hard-
coded the ontology model (RDF or RDFS, etc.). To enable
the evolution of ontology models, a third database architecture
(calledType3) extending the second one by adding a new part,
called themeta-schema partwas proposed [9]. The presence
of the meta-schema offers the following characteristics: (1)
a generic access to the ontology part, (2) a support of the
used ontology model’s evolution by adding non functional
properties such as preferences [13], web services [14], etc.
and (3) a storage of different ontology models (OWL, PLIB,
etc.).

When ontologies became a part of databases, several re-
search efforts were mainly concentrated on the physical design
phase, where storage layouts dedicated for ontologies and
their instances were discussed. Three main storage layoutsare
distinguished: vertical, horizontal and binary. Verticalrepresen-



tation stores data in a unique table of three columns (subject,
predicate, object) (eg. Oracle [8]). In the binary representation,
classes and properties are stored in different tables (eg. IBM
SOR [10]). The horizontal representation translates each class
as a table having a column for each property of the class (eg.
OntoDB [9]). Note that each storage layout has its advantages
and limitations based on the ontological data and the queries.
Nowadays, DBMS proposes fixed storage layouts for its differ-
ent components (data, meta-schema, ontology model). In real
life applications, database administrators may choose thetarget
DBMS based on her/his architectures and storage layouts.

A. Summary.

The main studies inSDB were mainly concentrated on
the physical phase of database development. This situationis
similar to what we have seen during the development of the
database technology. When Prof. Edgar Frank Codd proposed
his relational model in 70’s [15], the lifecycle of database
applications had only two phases: logical and physical phases.
In the logical phase, the database schema may be normalized
using the functional dependencies defined on properties to
reduce the redundancy and ensure the quality of the final
database schema. In 1975, when Peter Chen proposed his entity
relationship model, he contributed in extending the lifecycle
of databases by adding the conceptual phase. Chen’s work
allows database technology to have its lifecycle. As a con-
sequence, several methodologies were proposed according to
this lifecycle: conceptual, logical and physical design phases.
We can cite the MERISE method [16], the Unified Process,
the Rational Unified Process, Two Tracks Unified Process, etc.
These methodologies were supported by academic and indus-
trial tools such as Sybase PowerAMC3 and Rational Rose4.
The maturity ofSDB technology requires the development of
design methodologies including different phases of database
lifecycle. Recall in traditional databases, usually the relational
table layout is advocated when deploying a database which
makes easier the deployment process. In theSDB, the diversity
of storage layouts and the architectures of the target DBMS
makes the deployment more complicated. Another aspect that
has to be considered is the loading of ontological instances
into theSDB (Figure 3). This problem is quite similar to ETL
process (extraction, transformation, loading) [17].

B. Outline and Contribution

The contributions of our work are:

• The identification of the causes of redundancies and
inconsistencies ofSDB which represent the presence
of the non-canonical concepts in ontologies and de-
pendencies between properties.

• The proposition of a formal model for describing con-
ceptual ontologies embedding dependencies between
their concepts and properties.

• The presentation of a complete methodology for de-
signing SDB, where deployment (including ETL) is
ensured through services.

3http://www.sybase.com/products/modelingdevelopment/poweramc
4http://www-01.ibm.com/software/awdtools/developer/rose/

The remainder of this paper is organized as follows. Section
2 presents the related works. Section 3 exposes the weak
exploration of ontology characteristics related to dependencies
relationships. In Section 4, we propose a formalization of
ontological dependencies andSDB. Our approach exploiting
conceptual dependencies to improve the semantic database
process is given in section 5. Section 6 shows an application
of our approach to improve theSDB design methodology in
the Oracle 11g. Finally, section 6 gives a conclusion and some
future research directions.

II. RELATED WORK

Since the 70s, the functional dependencies have been
widely studied in the database theory. These dependencies,
usually defined on the attributes, were especially exploited
in the databases design process. They are used to model
the relationships between attributes of a relation, compute
primary keys, define the normalized logical model to avoid
redundant data, check the data consistency, etc. For the de-
scription logics (DL), functional dependencies have also been
the subject of several studies [18], [19], [20], [21], [22],
[23]. In [18], Borgida et al. have expressed the need to add
unique constraints for semantic data models, particularlyfor
the description logic, while in [19], the authors studied the
possibility to make them explicit in this language.

In [24], the authors extendDLR with identification con-
straints and functional dependencies. Note thatDLR is an
expressive Description Logic with n-ary relations, particularly
suited for modeling database schemas. The resulting DL, called
DLRifd, allows one to express these constraints through new
kinds of assertions in the TBox. For example, a functional
dependency assertion has the form (fd R i1,..., ih → j) where
R is a relation, h≥2 and i1,...,ih,j denote components of R.
In [20], Motik et al. showed the role of constraints in the
ontologies while drawing a comparison between the constraints
in databases and those in ontologies.

In [21], [22], the authors were interested in the study of
dependency relationships and their implications in ontologies.
In [22], the authors propose a new OWL constructor to define
functional dependencies. They describe a FD by the following
quadrupletFD = (A,C,R, f), where:

• A is the antecedent i.e. is a list of paths (A =
{u1, u2, .., un}). A path ui is in turn composed of
rolesri (ri (ui={ri,1, ri,2, .., ri,n}).

• C is a consequent composed by a single path (C =
{u}).

• R is a root concept representing the starting point of
all paths in the antecedent and consequent.

• f a deterministic function which takes as parameters
the ranges of the last roles of the antecedent paths.

These dependencies are then translated into a set of SWRL
rules for the reasoning process.

In [21], the authors propose an approach to define func-
tional dependencies for a domain ontology based on the
concepts and roles defined in such ontology. They propose
an algorithm for the identification of a set of FD exploiting



the capabilities ofDLLiteA reasoning. Note that theDLLiteA

is a variant of the DL-Lite family which is a new description
logic specially adapted to capture basic ontology languages.
The proposed algorithm computes (i) a set of functional
dependencies between ontological classes and (ii) the transitive
closure. Romero et al. [21] introduce a functional dependency
as a relationship between classes. For two conceptsC1 andC2,
the authors established that each instancei1 ∈ C1 determines
a single instance ofC2 if (1) there exists a functional role
(ri) valued fori1 and (2)ri connectsi1 to a unique instance
of C2. This dependency relationship is denoted byC1 → C2.
These dependencies are then exploited during the data ware-
house design process to make the logical schema definition
automated.

In parallel, semantic databases, storing in the same reposi-
tory ontological data and the ontology describing their mean-
ings, have been introduced. To support such a database, several
architectures have been proposed [6], [7], [8], [25], [10],[11],
[12]. They have been mainly focused on the scalability of these
databases. Considering the support of ontology, eachSDB
supports the semantics of a given ontology model using hard
coded techniques either by using database mechanisms or by
relying on an external logical engine. Therefore, theSDB may
contain anomalies like redundant and inconsistent data. For
example, let us assume that the individuali1 is instance of
C1 and C2. Considering the storage process,i1 description
is duplicated in theSDB and a redundancy case is raised.
Unfortunately, there is no available methodology dedicated to
the SDB design and avoiding these anomalies.

To summarize, we can easily say that studies on ontological
functional dependencies have been mainly focused on objects
properties (properties relating concepts to concepts). Inthe
other word, functional dependencies are defined at the ontology
level. A few studies on dependencies between data properties
(properties having as a range a simple type) and the defined
classes exist. One of the main objectives of our paper is to
study the characteristics of ontologies in order to identify de-
pendencies between properties and classes and exploit themto
propose a consistentSDB. Such characteristics are described
in details in the next section.

III. W EAK EXPLORATION OF ONTOLOGY FEATURES

A long this paper, we concentrate on conceptual ontologies
that offer two types of dependencies: (i) the dependency
relationships between the ontological properties and (ii)the
dependency relationships between ontological classes.

A. Dependency relationships between properties

In an ontology, two types of properties are distinguished:
(1) the data properties that link individuals to data values
and (2) the object properties that connect individuals to other
individuals. By examining existing ontologies, we observethat
the property definition may be expressed in terms of other
properties. Therefore, dependency relationships may be raised.
This section studies dependency relationships between data
properties and object properties.

1) Dependency relationships between data properties:A
definition of a data property may be expressed from other prim-
itives and/or defined data properties sharing the same domain.

These derived definitions may be characterized as algebraic.
An algebraic concept definition is a non-canonical definition
that can be computed with the use of algebraic operators
such as the composition, union, intersection, restrictions, etc.
while a structural non-canonical concept definition consists
in defining and deducing a notion without using algebraic
operators.

Example 2:For a better understanding, let us consider
the data propertiesSSN (describing social security number),
birthdate, age, Studentstatus (describing if a student is major
or minor) andcountry of the classStudent of the ontology
of Lehigh University benchmark5 (Figure 4). This ontology
is used along this paper. These properties have as a domain
the Student class and as a range an integer, a date or a
string, respectively. Assuming that the birthdate is a prim-
itive property, therefore, the property age is considered as a
non-canonical algebraic property since it computed from the
birth date and the current date. Based on this definition, the
functional dependency between the properties birthdate and
age (birthdate → age) can be defined.

2) Dependency relationships between object properties:
An object property is a binary relation between two individuals
belonging either to the same ontological class or to two
different classes.

Example 3:The object propertyteachesdescribes a bi-
nary relation betweenProfessor and Course classes. Data
properties can be primitive or derived (computed from
the primitive and/or defined object properties). Let us
consider the propertiesheadOf , headOfDepartement and
GeneralHeadOfUniversity describing respectively the fact
of being a headmaster, a department headmaster and a uni-
versity general headmaster. The third property can be de-
rived from the first two ones (GeneralHeadOf = headOf
◦ headOfDepartement) since a university general head-
master is the headmaster of a departement headmaster.
As a consequence, a dependency relationship (headOf ,
headOfDepartement → GeneralHeadOf ) can be identified
betweenheadOf , headOfDepartement and the non-canonical
algebraic propertyGeneralHeadOf .

B. Dependency relationships between classes

As we said in the Section 1, an ontology may have two
types of classes: the canonical (primitive) classes and thenon-
canonical (defined) ones. The derived classes may be classified
in algebraic concepts or structural ones.

In the first case, classes are defined as class expressions
based on set operators and/or property restrictions (∪, ∩, ¬,
∃, ∀, etc.). For example, let us assume that a data property
StatusUniversity describing the status of a university (public
or private) has as a domain the primitive conceptUniversity
describing all the universities. APublicUniversity class
that specifies the public universities may be defined as the
restriction on the propertyUniversityStatus on the public
value (PublicUniversity ≡ ∃ UniversityStatus.{public}
and domain (UniversityStatus) = University). Based on
this definition, a class dependency may be identified as
follows: University → PublicUniversity. It means that

5http://swat.cse.lehigh.edu/projects/lubm/



Fig. 4: A fragment of the Lehigh University ontology.

the knowledge of the whole instances of theUniversity
class determines the knowledge of the whole instances of the
PublicUniversity concept.

In the second case, classes are expressed using a direct
enumeration of its members. For a better understanding, let
us consider this example. LetCharenteUniversity con-
cept be the class describing the universities located at the
Charente department (in France). It is defined as one of
the following University instances: Poitiers University,EN-
SMA, Angouleme University, ENSIP (CharenteUniversity
≡ oneOf {PoitiersUniversity, ENSMA, AngoulemeUniver-
sity, ENSIP}). Therefore, theCharenteUniversity definition
depends on the University instances definition since the knowl-
edge of the whole instances of the enumareted universities
determines the knowledge of the whole instances of the
CharenteUniversity.

Ontology models provide the means to define derived classes.
For example, the PLIB [1] model allows the definition of
the derived classes across basic set operators, functions and
enumeration. In OWL, various builders are given to define
such classes (owl:unionOf, owl:intersectionOf, owl:hasValue,
owl:oneOf, etc.).

C. Synthesis

Our study shows that ontology models allow defining con-
cepts and properties with dependencies. But, some functional
dependencies among properties cannot be captured by these
definitions. Let us consider the SSN property. Knowing a
student SSN allows identifying exactly other data property
values. To offer designers the means to express such de-
pendencies and to define explicitly conceptual dependencies,
we propose to extend the expressive power of ontologies by
incorporating these new concepts in the ontology models. In
the next section, we propose a formal model of ontologies
considering dependencies between ontological propertiesand
classes.

IV. FORMALIZATION

In this section, we first propose a formal model of ontolo-
gies followed by a formalization of semantic databases.

A. A formal model of ontologies

The existing formalization of ontologies ignore the de-
pendencies that may exist between classes and properties
[26]. In this section, we propose a complete formalization
of conceptual ontology. Therefore, an ontology becomes a 7-
tuple O:〈C,R,Ref(C), Ref(R), FD(R), FD(C), Formal〉,
where:

• C denotes concepts of the model (atomic concepts and
concept descriptions).

• R denotes roles (relationships) of the model. Roles can
be relationships relating concepts to other concepts,
or relationships relating concepts to data-values (like
Integer, Float, String, etc).

• Ref(C): C → (Operator, Exp(C,R)). Ref(C) is a
function defining classes of the DL TBOX. Operators
can be inclusion (⊆) or equality (≡). Exp(C,R) is
an expression over concepts and roles ofO using
constructors of description logics such as union, in-
tersection, restriction, etc.(e.g, Ref(Professor)→ (⊆,
Person∩ ∀ givesCourse(Person, Course))).

• Ref(R): R → (Operator, Exp(C,R)). Ref(R) is
a function defining roles of the DL TBOX. Op-
erators can be inclusion (⊆) or equality (≡).
Exp(C,R) is an expression over concepts and
roles of O using constructors of description log-
ics such as union, intersection, restriction, etc.(e.g,
Ref(GeneralHeadOf ) → (≡, (headOf(Person, Per-
son)◦ headOfDepartement(Person, Department))).

• FD(R): C x 2R → R a mapping from the powerset
of R ontoR representing dependencies defined on the
applicable rolesR of a classCi ∈ C. A FD(R) is de-
fined as a pairFD(R):< FD(R).RP, FD(R).LP >
where:

◦ FD(R).RP is a roleR describing the depen-
dent attribute of the role functional dependency
(right part) i.e.FD(R)(Ci, (R1, .., Rn));

◦ FD(R).LP is a powerset ofR describing the
determinant set of the role functional depen-
dency (left part) i.e. domain(FD(R) (Ci));

• FD(C) a mapping from the powerset ofC onto



C representing class dependencies. AFD(C) is de-
fined as a pairFD(C):< FD(C).RP, FD(C).LP >
where:

◦ FD(C).RP is a classC describing the depen-
dent class of the class dependency (right part)
i.e. FD(C)((C1, .., Cn));

◦ FD(C).LP is a power set ofC describing the
determinant set of the class dependency (left
part) i.e. domain(FD(C));

• Formal is the formalism followed by the ontology
model like RDF, OWL, PLIB, etc.

B. Semantic database formalization

Since ontology is a part of aSDB, a formalization of such
database becomes necessary.SDB is then defined as a 8-tuple
SD:〈IM, I, Pop, SMIM , SMI , Ar,Rel, RS〉.

• IM is the information model of the source. It de-
scribes a fragment of the ontologyO that defines the
user requirements. Three scenarios may occur:

◦ IM ⊂ O means thatO is rich enough to cover
the user requirements;

◦ IM = O means thatO covers all the designer
requirements;

◦ IM ⊃ O means thatO does not fulfill the
whole designer requirements. The designer ex-
tracts from theO a fragment corresponding to
the requirements and enriches it by adding new
concepts/properties/dependencies to define the
IM ;

• I presents the instances or data of the source;

• Pop: C → 2I is a function that relates each concept
to its instances;

• SMIM is the storage model of the information model
(vertical, horizontal, binary);

• SMI is the storage model of the instance partI;

• Ar is the architecture model of the source;

• Rel presents the relations (tables) for instances store;

• RS: C → 2Rel is a function that relates each class to
its relations;

C. Instantiation of the Semantic Database Model

To instantiate the above model, let us consider an ex-
tended fragment (FLUO ) of the Lehigh University ontology
benchmark (LUO) as shown in Figure 4, where some classes
and dependencies are added. For example, a dependency
between the classes Student and Master Studend (Student →
MasterStudent) is defined, since theMasterStudent class
may be expressed as a student with a master value (Mas-
terStudent≡ ∃ level.Master; Domain(level) = Student). The
dependencyidUniv → name meaning that the university
identifier (idUniv) determines the university name (name) is
an example of dependencies defining on role of the University
class.

We consider two examples of instantiation of our model
by considering one commercial DBMS which is Oracle and
an academic DBMS which is OntoDB.

a) Oracle DBMS: The different components ofSDB
are

• (IM = FLUO )⊃O sinceFLUO = fragment(O) ∪ C ∪
R ∪ FD(C) ∪ FD(R);

• I presents the FLUO instances. For example,
the triplets (University#1, type, University)
(University#1, idUniv, ’M50421’) describe that
University#1, instance of University class, has
’M50421’ as an identifier value;

• For eachCi ∈ CIM , Pop(Ci) is defined. If we
consider theUniversity class, Pop(University)
= {University#1, University#2,...,
University#100};

• Oracle uses a vertical representation to store its infor-
mation system;

• A vertical table is used to store instances. Note that
this table store bothIM andI;

• Oracle has aType1 architecture (two parts: meta-base
and data);

• Since Oracle uses vertical representation, a unique
table is created;

• RS =φ.

b) OntoDB DBMS:

• IM = FLUO ;

• I presents theFLUO instances.

• As in Oracle, Pop(University)={University#1,
University#2,..., University#100};

• OntoDB uses the hybrid storage layout;

• OntoDB uses the horizontal representation to store its
instances;

• OntoDB has aType3 architecture (four parts: meta-
base, ontology, meta-schema and data);

• Since OntoDB uses the horizontal representation, a
table is generated for each class. Therefore,Rel =
{RelUniversity, RelStudent, RelProfessor, RelCourse,
RelPerson, etc.}

• A relation Reli is generated for eachCi ∈ C. Note
that the class and its associated relation has the same
name in OntoDB. Thus, RS(Ci) = RelCi

. For example,
RS(University) = RelUniversity since a table Uni-
versity is generated and associated to theUniversity
class.

V. DESIGN OFCONSISTENT SEMANTIC DATABASE
LOGICAL MODELS

In this paper, we are interested in exploiting dependency
relationships between ontological concepts to improve the
SDB design process. Inspired from relational database design
[27], we propose to incorporate dependency relationships in
theSDB design process in order to (1) reduce redundancy by
generating a normalized logical model, and (2) improve the



Fig. 5: Semantic database design approach

database quality by detecting the inconsistent data causedby
the violation of integrity constraints identified from dependen-
cies definitions.

Therefore, we propose our methodology to designSDB
with good quality. Our methodology has the following steps
(Figure 5):

1) Definition of Conceptual Model: the designer de-
fines the conceptual model by extracting a fragment
of the used ontology according to her/his require-
ments

2) Identification of Canonical Concepts: as we said
in the previous sections, the exploitation of depen-
dencies between classes facilitates the identification
of canonical and non-canonical classes. To do so, we
propose a graph structure. It is built fromFD(C),
where its nodes represent the ontology classes. An arc
exists between two nodesni andnj if a dependency
exists. This graph is then used as the input of our
proposed algorithm to determine the minimum set
of canonical concepts (CC) and generates the set
of non-canonical concepts (NCC). This algorithm
starts by computing the isolated classes (classes not
involved in FD(C)). Note that these classes will be
canonical since they can not be derived from other
ones. Then, the minimum coverage-like classes (C+)
is computed. It represents the minimum subset of
basic FD(C) to generate all the others. C+ has to
be treated so as to eliminate circular relationships
between classes. Finally, the set of CC is identified
and a consequence, the set of NCC is deduced. Recall
that this identification contributes in reducing the
redundancy in the finalSDB.

3) Generation of a Normalized Logical Schema:for
each canonical classcci ∈ CC, we exploit the FD(R)
defined on their properties to generate the normalized
logical model. Note that, for eachcci , a primary key
is computed and relations in 3NF are generated.

4) Hiding the physical implementation: to facilitate
the user access, we define a view on the normalized
relations corresponding to each canonical class. So,
the users may query theSDB without worrying about
the physical implementation of those classes.

5) Access Support to non-canonical classes:to en-
sure the transparency in accessing data through non-
canonical classes and reduce redundancy in the target
SDB, we propose the use of views. For eachncci ∈
NCC, a relational view is computed. For example, let
nccj be a NCC defined as the intersection of the two

canonical classescc1(r1, r2, r3) andcc2(r1, r2, r4)
where{r1, r2, r3, r4} ⊂ R, a view corresponding
to nccj is defined as illustrated in the Listing 1.

Listing 1: Example of a relational view definition
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
CREATE VIEW n c c j AS
( (SELECT r1 , r2 FROM cc1 ) INTERSECT
(SELECT r1 , r2 FROM cc2 ) )

6) Deployment: Due to multitude choices of architec-
tures of the target DBMS and storage layouts, the
deployment process become more harder than the
classical databases. To illustrate this difficulty, let us
study its complexity. LetA = {A1, A2, .., An}, P =
{P1, P2, .., Pn} and SM = {SM1, SM2, .., SMn}
be the set of all possible architecture types, set of
various needed parts according to the design approach
and the set of existing storage models. The number
of deployment possibilitiesD that designer needs to
consider is given by the following equation:

D = card(A)× (card(SM))
card(P)

). (1)

Our analysis on databases architectures [25], [28], [9],
[29], [7] gives rise to three main architectures. Each
identified architecture may have at most four parts:
meta-base, meta-schema, ontology and data. Accord-
ing to the previous steps, the designer have to deploy
only in three parts: the meta-schema part to store the
extended ontology model (supporting dependencies
definition and classes types), the ontology part to
store ontology definition and the data part to store
the generated logical model and ontological data.
Note that three main storage models may be used
for each one of these parts as follows [11]: (SM1)
vertical table, (SM2) horizontal representation and
(SM3) binary representation. Therefore, the deploy-
ment complexity is equal toO(3 ×

(

33
)

). Studying
81 cases becomes a difficult task.
The designer is constrained to consider a significant
number of choices. This makes the deployment pro-
cess more complex. To overcome this situation, the
SDB deployment process must be done in a generic
way. For that reason, we propose a deployment on
demand implemented as a service which follows the
standards such as WSDL6, SOAP7 and UDDI.
Based on the different parts ofSDB architectures,
three kinds of deployment services are identified:

6http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
7http://www.w3.org/TR/wsdl



Fig. 6: Deployment ofSDB as a Service.

(1) a service concerns the meta-schema level, (2)
a service dedicated to the ontology level and (3) a
service for the data level. Note that aSDB may
materialize ontological data that come from various
sources (Web, files, databases, etc.) with different
formats. A similar ETL service has to be developed
to clean, transform and load data into theSDB. [17]
defined ten generic operators typically encountered in
an ETL process, which are:

a) EXTRACT (S,C): extracts, from incoming
record-sets, the appropriate portion.

b) RETRIEVE(S,C): retrieves instances associ-
ated to the classC from the sourceS.

c) MERGE(S,I): merges instances belonging to
the same source.

d) UNION (C,C’): unifies instances whose cor-
responding classesC andC ′ belong to dif-
ferent sourcesS andS′.

e) JOIN (C, C’): joins instances whose corre-
sponding classesC andC ′ are related by a
property.

f) STORE(S,C, I): loads instancesI correspond-
ing to the classC in a target data storeS.

g) DD(I): detects duplicate values on the incom-
ing record-sets.

h) FILTER(S,C,C’): filters incoming record-
sets, allowing only records with values of the
element specified by C’.

i) CONVERT(C,C’): converts incoming record-
sets from the format ofC to the format of
C ′.

j) AGGREGATE (F, C, C’): aggregates in-
coming record-sets applying the aggrega-
tion functionF (e.g., COUNT, SUM, AVG,
MAX) defined in the target data-store.

For our case, all these operations are considered
except the aggregation operator.
The data are then extracted from different sources,

saved in a temporary file generated into OntoML8

format (Ontology Mark-up Language) which allows
ontologies representation and exchange. The OntoML
file is used as a generic format of semantic data
exchange, transformed according to the format of the
target schema (vertical, horizontal, etc.) and loaded
into the SDB. Figure 6 illustrates the deployment
process.

Algorithm 1 shows an implementation of our ETL operators.

A validation of our approach is proposed in the next
section.

VI. A CASE STUDY

A case study implementing the proposedSDB design
approach in Oracle 11g is proposed. The choice of this
database is justified by the leading position that has Oracle
11g in the database area. To lead our validation, we use an
extended fragment of the Lehigh University ontology as shown
in Figure 4. The validation process contains two main steps:(1)
the design step and (2) the deployment step where a services-
based case tool is proposed.

A. The design step

The design stage requires the execution of a set of steps
as follows: (1) the OWL meta-schema extension, (2) the
primary key computation, (3) the analysis of classes and (4)
the conversion of the OWL ontology to a N-Triple format.

1) The OWL Meta-schema extension:Since the used on-
tology language does not handle dependencies representation,
we propose to extend the OWL meta-schema by adding the
following meta-classes: FD(R), FD(R).RP, FD(R).LP, FD(C),
FD(C).RP and FD(C).LP. These meta-classes describe respec-
tively a functional dependency defined between properties,its
right part, its left part, a class dependency, the FD(C) right
part and the FD(C) left part. For each added meta-class, a

8http://wiki.eclass.eu/wiki/ISO13584-32ontoML



begin
Input: SDB (the schema only) and Sources (S)
Output: PopulatedSDB (schema + instances)
for Each C : Class of ontologydo

ISDB = φ
for Each sourceSi ∈ S do

if Cs≡ C /* instances in Si

satisfying all constraints
imposed by SDB*/ then

C ′ = IdentifyClasse(Si, C)
end
else

if Cs⊂ C /*Instances in Si
satisfy all constraints
imposed by SDB, plus
additional ones */ then

C’= IdentifyClasse (Si, C)
end
else

if Cs⊃ C /* Instances
satisfy only a subset of
constraints imposed by
SDB*/ then

if format(C) 6= format(Cs)then
C’= CONVERT (C, Cs)
/*identify the
format conversion
from the source to
the target SDB*/

end
if C represents filter constraint
then

C’= FILTER (Si, C, Cs)
/*identify the
filter constraint
defined in the
target SDB*/

end
end

end
end
Isi = RETRIEV E(Si, C) /*Retrieve
instances of C*/
if more than one instance are identified in
the same sourcethen

ISDB= MERGE (ISDB , Isi) /*Merge
instances of Si*/

end
if more than one instance are identified in
different sourcesthen

ISDB= UNION (ISDB , Isi) /*Unites
instances incoming from
different sources*/

end
end
if Source contain instances more than needed
then

ISDB= EXTRACT (ISDB, Isi) /*
Extract appropriate
instances*/

end
end
STORE(SDB,C, DD(ISDB)) /*Detects
duplicate; loads them in SDB*/

end
Algorithm 1: ETL operators

set of meta-properties is defined. For example, theIts Class
meta-property references the meta-class to which the FD(R)is
associated. These dependencies may be exploited to compute
the types and the primary keys of classes. So, to represent
such a data, we propose to enrich the OWL meta-model by
adding the meta-classes PrimaryKey, NonCanonic and Canonic
describing respectively the primary key concept and the canon-
icity of classes. A set of meta-properties is associated to the
PrimaryKey meta-class: the PK.class references its associated
class while the PK.prop describes the set of the properties
composing this key. Figure 7 shows a fragment of the UML
model describing the extended OWL meta-model.

2) Compute primary keys:To compute the appropriate
primary key for each ontological class, we exploit the FD(R)
defined on the properties of each class. To do so, we apply a
java program that we have developed, on the extended OWL
ontology. Based on the FD(R), this program computes and
associates a primary key for each ontological class. To lead
our validation, we use an extended fragment of the Lehigh
University ontology as shown in Figure 4. Let us assume that
the idUniv property that describes the university identifier
is generated as the primary key of theUniversity class.
Therefore, this step triggers the meta-schema instantiation by
adding the appropriate ontological data in the University.owl
file to define the generated primary key as described in the
Listing 2.

Listing 2: Example of the meta-schema instantiation
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
<PrimaryKey r d f : ID=” Pr imaryKey 10”>
<PK . prop r d f : r e s o u r c e =”# idUniv ”/>
<PK . c l a s s r d f : r e s o u r c e =”# U n i v e r s i t y ”/>
</PrimaryKey>

Once the primary keys are computed, an analysis to identify
canonical and non-canonical classes is performed as described
in the next step.

3) Analysis of classes:To identify the types of classes, we
apply a java program, exploiting the class dependencies, onthe
the Lehigh University ontology. Once the canonical and non-
canonical classes are identified, we instantiate the meta-scheme
classes ”Canonic” and ”NonCanonic” by generating the owl
statements describing the classes types definition. Figure8
illustrates the class analysis process of the used ontology.

4) Ontology conversion:Oracle 11g offers only the data
loading under the N-TRIPLE format (.nt). To meet this re-
quirement, we use the converterrdfcat provided by the Jena
API (version 2.6.4) as shown in Figure 9. This tool enables the
transformation of an OWL file (.owl) to a N-TRIPLE file (.nt).
For example, the Listing 3 describes the instruction allowing
the transformation of the Lehigh University ontology from the
OWL format to the N-TRIPLE format.

Listing 3: Conversion of the Lehigh University ontology
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
C:\ programs\Jena−2.6.4> j a v a j e n a . r d f c a t−ou t n t r i p l e
U n i v e r s i t y . owl > U n i v e r s i t y . n t

By this conversion, the OWL statements defining the
primary key idUniv of the University class (see previous
paragraph) are transformed into a set of triplets as described
in Listing 4.



Fig. 7: OWL meta-schema extension.

Class Identification :

C9C9

C1: University 
C2: PublicUniversity 
C3 : PrivateUniversity  
C4: Student_Employee 
C5 : Student
C6 : Employee
C7: MasterCourse
C8: FullProfessor 
C9: Course
C10: Chair
C11: Person
C12: DoctoralCourse
C13: MasterStudent
C14: Professor

C5

C2

C1

C3

C6

C4

C8

C7

C10

C12

C11
C13

C14

C5C5

C2C2

C1C1

C3C3

C6C6

C4C4

C8C8

C7C7

C10C10

C12C12

C11C11
C13C13

C14C14

CC = { C1, C2, C5 , C6 , C8, C9 ,C10, C11 , C12 , C13, C14}  ; NCC = { C3 ,C4 ,C7 }

C9, C8 C7 ;   C2, C3 C1 ;                        ;

Class Dependencies:

C5, C6 C4C1 C3 C9, C8 C7 ;   C9, C8 C7 ;   C2, C3 C1 ;                        ;

Class Dependencies:

C2, C3 C1 ;                        ;

Class Dependencies:

C5, C6 C4C5, C6 C4C1 C3C1 C3

.java

.owl

<owl:Class 
rdf:ID="MasterStudent"
>

<owl:equivalentClass>
<owl:Restriction>
<owl:onProperty>

<owl:DatatypeProperty 
rdf:ID="level"/>

</owl:onProperty>
<owl:hasValue    

….

Fig. 8: Example of the classes analysis process.

Fig. 9: Conversion of an OWL ontology to N-Triple ontology.

Listing 4: Example of the primary key conversion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
( PrimaryKey 10 , type , Pr imaryKey )
( PrimaryKey 10 , PK . prop , idUniv )

( PrimaryKey 10 , PK . c l a s s , U n i v e r s i t y )

Once the ontology conversion is done, the deployment step
is applied as described in the next section.

B. OntoDep: a services-based case tool

In this section, we propose a service-based case tool en-
abling the deployment of our approach onSDB. The proposed
tool is implemented in Java language and uses OWL API
to access ontologies. Each service mentioned in section V
is implemented as a Web Service. According to the chosen
architecture and storage layout, the appropriate Web Service
is invoked via SOAP messages.



Fig. 10: Deployment process: the meta-schema service invo-
cation.

The deployment process is performed by invoking the
suitable Web Service that translates the semantic data to either
a vertical, horizontal or binary representation, by generating
XML files. The data loaded into our database are issued
from sources. As a consequence ETL operators (Extract,
Filter, Convert, Merge, etc.) have to be implemented using
the appropriate ontological language (SPARQL for vertical
representation, OntoQL for Horizontal, etc.). During thisstep,
the implemented ETL algorithm is executed in order to extract
semantic data from XML files, to transform and to load them
into the targetSDB. The description of each Web Service is
implemented in a WSDL file.

Our tool is implemented so that technical details are hidden
to the user. Access to the persistent storage is implemented
using Data Access Object (DAO) Design patterns [30]. The
DAO pattern provides flexible and transparent accesses to
different storage layout. Based on the architecture of the
SDB, the right object DAO is selected. In order to obtain
a generic deployment process, our solution follow a service
oriented architecture (SOA). SOA offers the loose coupling
of the defined Web Services and interaction among them. It
allows the integration of new web services without affecting
the existing one. This provides the flexibility of the deployment
process. To deploy our approach on Oracle 11g, three main
steps are required as follows: (1) the meta-schema deployment,
(2) the ontology deployment and (3) the data deployment. Note
that Oracle 11g is aType1 architecture and uses the vertical
table as a storage model for all types of data.

1) The meta-schema deployment:Oracle 11g offers several
techniques for the loading: (i) the bulk load, (2) the batch
load and (3) a load into tables using SQL INSERT statements.
We chose the first method for its fast loading. It loads the
ontological data in a staging table using the SQLLoader utility
(sqlldr) before being sent to the database. Since our design
approach requires the ontology meta-schema extension, thede-
ployment meta-schema service is invoked. This service extends
the usedSDB meta-model by adding the needed meta-classes
and meta-properties to handle dependencies and canonicity
representations. The Figure 10 illustrates the invoking ofthe
meta-schema service.

Fig. 11: Deployement process: the ontology service invocation.

2) The Ontology deployment:Once the meta-schema is
deployed, the ontology has to be loaded. To do so, we invoke
the ontology deployment service. Firt, we specify the ontology
deployment characteristics: theSDB architecture (Type1) and
the used storage model (vertical table). Then we load the ap-
propriate file describing the used ontology (University.nt). This
loading involves the storing of classes, properties, concepts
hierarchy, conceptual dependencies, primary keys and classes
types. The Figure 11 illustrates the invoking of the ontology
service.

3) The Data deployment:To deploy data on theSDB, the
data deployment service is invoked. First, we specify the data
deployment characteristics: theSDB architecture (Type1) and
the used storage model (vertical table). Then, the ETL process
is applied. It consists in extracting instances from the N-Triple
file, filtering them, converting these instances according to the
SDB schema, merging instances related to the same classes
and loading them into Oracle 11g. The Figure 11 illustrates
the invoking of the ontology service. The demonstration video
illustrating the deployment process ofSDB is available at http:
//www.lias-lab.fr/forge/rcisvideo/video.html.

C. Synthesis

In the most semantic databases, storage layouts are frozen.
For example, in Oracle 11g, the vertical representation is
used for the storage of ontological concepts and instances.
Therefore, our approach may be improved to consider all
possible combinations of storage layouts. Indeed, based onthe
class dependencies, the class’s types are identified and stored
in the ontology-based data models. The property functional
dependencies modeling allows computing primary keys for
each ontological class and subsequently, storing them in the
SDB. Based on these keys, rules helping to detect a set of
inconsistent data may be defined. Therefore, the data quality
may be improved by detecting a set of inconsistent and
duplicated data violating these integrity constraints. Thus, ex-
ploiting dependencies ensures that the stored data correspond
to the boundaries of the modeled universe and reduces the
inconsistency and redundancy in the semantic database models.



VII. C ONCLUSION

This paper shows the need to develop a complete method-
ology for designing consistent semantic databases including
the main steps of database lifecycle: conceptual, logical,phys-
ical and deployment. This is motivated by the spectacular
development of academic and industrial solutions to support
such databases. We tried to show thestrong couplingbetween
ontologies and databases and to highlight ontologies in the
design process of databases. In the past ontologies were used
in the conceptual level of the database development. If we
accept to push them along all steps of the lifecycle, we need
to give database designers algorithms and tools to identify
redundancy. Considering all ontological concepts (canonical
and non-canonical) may cause inconsistent databases. To avoid
this situation, we proposed to enrich the traditional definition
of ontologies with dependency relationships between prop-
erties and classes of the ontology. Precise formalizationsof
ontology and semantic databases is given including different
components (classes, properties, storage models for ontology
and instances, architecture of the target DBMS, dependency
between classes and properties). The presence of functional
dependencies between properties allows generating normalized
logical model. A graph-based algorithm is proposed to identify
the canonical concepts of a given conceptual ontology. These
concepts are stored into the database in normalized form. The
non-canonical concepts are represented by relational views.
Our approach offers a deploymentà la carte based on Web
Services including ETL process. A case tool dedicated to the
deployment process is proposed considering semantic Oracle
DBMS.

Currently, we are developing a design tool in order to
assist designers during theSDB design process. Also, we are
working in proposing cost models evaluating the cost for each
deployment instances.
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