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Abstract

For identifying a continuous-time (CT) transfer function model, data
filtering is a solution which provides the necessary unmeasurable input-
output derivative approximations. In discrete-time (DT) system iden-
tification, the well-known ARX model can be used successfully if the
estimate is performed with suitable prefiltered data. This paper des-
cribes the reinitialized partial moment (RPM) model which embeds im-
plicitly a finite impulse response filter in both CT and DT domains.
With knowledge of the important role of data prefiltering in standard
methods, this RPM model embedded filter gives particular properties to
this original tool. Although both the CT RPM model and the DT RPM
model present an embedded filter, the formulation and the implementa-
tion in the CT and the DT domains are different. Therefore, the aim of
this paper is to present a tutorial on the RPM models and to give an
overview of all the applications.

Mots-clés
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1 Introduction

The moments are useful tools in statistics and probability theory, and a large body of literature
has been dedicated on this topic for a century [6]. The well-known moment method is used in a very

1. This internal report will be published in International Journal of Control in 2011. For reference to this paper,
please cite [26].
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wide application field, especially in control system and model reduction [1, 2, 16]. In system identi-
fication, [9] first used the time moments to depict the impulse response and the transient behaviour
of a linear system. Based on Kalman’s work, minimal realizations using moments have been proposed
in [3, 27]. However, the straightforward application in system identification has been limited by two
main problems : the restriction to an impulse or step input and the necessity to calculate the moments
on an infinite time interval. To solve these two problems, the partial moment has been introduced in
[35] which consists of considering the moment only on a finite time interval. The main property of
this formulation is its minimum variance for an optimal time interval. Hence, to keep this property
throughout the time domain, the reinitialized partial moment (RPM) has been introduced [36].
The contribution of this paper is to present a tutorial on the RPM models in the continuous-time
(CT) and the discrete-time (DT) domains. The main property of the RPM models is an embedded
finite impulse response (FIR) filter. In system identification, data filtering is a well-known notion and
is often a necessary step for an efficient model estimation. For instance, for identifying a CT model,
data filtering is a solution which provides the necessary unmeasurable input-output derivative approxi-
mations [14], or again, in DT system identification, the well-known ARX model can be successfully
used if the estimate is performed with suitable prefiltered data [19]. The RPM model, which can be
formulated in both CT and DT domains, embeds implicitly a FIR filter that plays the same role as
the explicit filter mentioned in [14, 19].
Although both the CT RPM model and the DT RPM model present an embedded filter, the formu-
lation and the implementation in the CT and the DT domains are different. The goal of this paper
is to describe in two separate sections all the mathematical developments which have led to the CT
RPM model and the DT RPM model [36, 31].
The RPM models with the embedded FIR filter are a powerful tool. They are alternative solutions for
the output error method 2 initialization problems mentioned in [19, 22, 40], and the performance of
the DT RPM model in this context has been shown in [33, 25]. By considering the increasing interest
for CT model approaches [15, 20], the CT RPM model is a well-tested method in different applications
[4, 5, 7, 8]. Moreover, recent developments have used the embedded CT RPM filter to build a CT
subspace-based identification method [24]. In addition, new algorithms based on the RPM properties
have been introduced in [31]. Lastly, recent papers [10, 11, 12] have introduced a CT algebraic frame-
work similar to the partial moment introduced in [35]. The present paper also contributes an overview
of all the RPM applications.
This paper is organized as follows. The RPM approach is described in Section 2 and an illustrative
example is given in Section 3 to compare the RPM model with basic models. Sections 4 and 5 present
the CT RPM models and the DT RPM models, respectively. In Section 6, the choice of the design
parameter is discussed. The conclusion is given in Section 7.

2 The RPM approach

In system identification, the equation error methods, which consist of a linear regression formu-
lation, have to solve a specific problem in both CT and DT cases. For the CT system identification,
the unmeasurable input-output derivatives must be approximated to allow the linear regression for-
mulation and to calculate the least-squares estimate. For the DT system identification with the ARX
model, the input-output samples are available and there are no problems in calculating the least-
squares estimate. But in this case, it is well known that data filtering is necessary to reduce the bias
according to the nature of the noise. The RPM approach is a unifying tool that solves both problems.
In the CT framework, the RPM is equivalent to an integration which allows a reformulation of the
differential equation, hence, the unmeasurable input-output derivatives vanish. In the DT framework,
a reformulation of the RPM shows an implicit filtering which plays the same role as the explicit filter

2. Output error methods and equation error methods in the sense of the classification introduced by [17, 21]
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for the ARX model.
The starting point of the RPM approach is the partial moment which consists of considering the CT
or DT moment on a finite time interval. The mathematical developments, which give the CT RPM
model and the DT RPM model, follow the same steps :

(1) A fundamental equation describes the system behaviour on a fixed finite time interval from
input-output data and from the partial moments. This general equation allows computations for
any system order.

(2) A formulation based on partial moment is deduced from the fundamental equation. This formu-
lation has the property of minimum variance for an optimal time interval.

(3) A RPM formulation allows the retention of the minimum variance property at each instant. The
RPM formulation can be seen as an integration on a sliding window whose width is the optimal
time interval.

(4) A formulation with an embedded FIR filter can be obtained from the RPM formulation.

Because specific computations are used in both CT and DT cases, the CT RPM model and the DT
RPM model are presented separately in Sections 4 and 5.
The RPM models need the choice of a design parameter called the reinitialization parameter. As for
the design parameters of other equation error methods, this choice needs a certain expertise which
will be described in Section 6.

3 Illustrative example

Before describing the mathematical developments for both CT RPM and DT RPMmodels, consider
a simple example to illustrate the RPM performance and to compare it with two basic approaches.
For the CT case, the state-variable filter (SVF) approach [37] is considered and, for the DT case, a
comparison with the ARX model [18] is presented.
Consider a second order oscillating CT system defined by

G(s) =
1

1 + 2ζ
ωn

s+ s2

ω2
n

(1)

with ζ = 0.4 and ωn = 1rad/s.
The sampling period ts is assumed to be 0.2s. The output response of G(s) to a square input signal
with a period of 40s is simulated. One thousand samples are considered. The performance of models
is evaluated by a Monte Carlo simulation with 1000 realizations of an output white noise and a signal-
to-noise ratio of 10dB.
To evaluate the estimation quality, consider a fitting index defined by

FIT = 100×
(
1− ‖y − ŷ‖

‖y −mean(y)‖

)
(2)

where y is the measured output and ŷ is the estimated model output. Consider also the normalized
root mean squared error defined by

NRMSE =

√√√√ 1

1000

1000∑

i=1

(
θ0j − θ̂j(i)

θ0j

)2

, (3)

where θ̂j(i) is the j-th element of the estimated parameter vector obtained from the i-th realization,
while the superscript ’0’ denotes the true parameter value.
For the CT approaches, the estimated model is a transfer function defined by

Ĝ(s) =
b̂0

â0 + â1s+ s2
(4)
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Table 1 – CT Monte Carlo results
b0 a0 a1 FIT (%)

True 1 1 0.8

SVF Mean 0.840 0.848 0.623 93.76
Std. 0.037 0.034 0.034 1.30
NRMSE 0.164 0.156 0.226

CTRPM Mean 0.929 0.933 0.712 97.03
Std. 0.034 0.031 0.034 0.92
NRMSE 0.079 0.073 0.118

Table 2 – DT Monte Carlo results
b0 b1 a0 a1 FIT (%)

True 0.018 0.019 0.852 - 1.815

ARX Mean 0.303 0.0006 -0.341 -0.355 80.23
Std. 0.062 0.059 0.023 0.023 0.52
NRMSE 16.283 3.285 1.401 0.805

ARX Mean 0.029 0.006 0.863 -1.828 95.87
with data Std. 0.009 0.008 0.006 0.007 0.93
prefiltering NRMSE 0.788 0.805 0.014 0.008

DTRPM Mean 0.047 -0.011 0.852 -1.816 97.99
Std. 0.010 0.009 0.007 0.008 0.68
NRMSE 1.720 1.675 0.008 0.004

The identification is performed with the Matlab routine lssvf of the CONTSID toolbox [13] for the SVF
method and with the routine lsctrpm downloaded from http://laii.univ-poitiers.fr/ouvrard/CTRPM/ for
the CT RPM method. After empirical tests, the optimal design parameters are chosen ; the cut-off
frequency of the routine lssvf is 0.9 rad/s and the reinitialization parameter of the routine lsctrpm is
20. The statistical results are presented in Table 1 with parameter mean values, standard deviations,
FIT and NRMSE indexes.

In the DT case, the discretization with zero-order hold method of the true transfer function system
(1) gives

G(z) =
0.019z−1 + 0.018z−2

1− 1.815z−1 + 0.852z−2
(5)

The estimated DT model has the same structure as (5). The DT system identification is performed
with the routine arx of the System Identification Toolbox of Matlab for the ARX model estimate
from prefiltered data or not, and with the routine lsdtrpm downloaded from http://laii.univ-poitiers.
fr/ouvrard/DTRPM/ for the DT RPM method. The design parameter of the routine lsdtrpm is 20,
the routine arx without prefiltering does not need design parameters and the routine arx with data
prefiltering considers a prefilter given by the true denominator (unknown in practice), i.e. the prefilter
1/(1 + 0.8s+ s2), as it is advisable by [19]. The statistical results are presented in Table 2.

In both CT and DT cases, this illustrative example shows the interesting performance of the RPM
approach. The bias of the CT RPM model is lower than the SVF-based model, which confirms the
results about the RPM approach obtained in [14, 13, 23]. The DT RPM model gives an accurate esti-
mate of poles and gain. The error on numerator parameters is due to the noise level and corresponds
to an equivalent fast CT zero. The good fitting with the DT RPM model is explained by the embedded
FIR filter. Without explicit data prefiltering, the ARX model estimates present a wrong fitting. The
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use of a data prefiltering is well known for the ARX model estimation. In that case the order and the
cut-off frequency of the prefilter are the design parameters of this approach. The differences between
the ARX and DT RPM models have been described in [25].
Notice that for the above approaches an iterative instrumental variable approach [38] can be imple-
mented to reduce the bias.

4 Continuous-time RPM model

Linear CT systems can be described by a differential equation, but the input-output time deri-
vatives are unmeasurable. Three CT system identification method classes exist, based on filtering,
integration or modulating functions [14], and allow an approximation of the time derivatives.
The CT RPM model approach appears to be based on an integration and thus belongs to the integral
method class. However, it will be shown below that this approach can be written as a convolution
with a filter. Therefore, it belongs also to the linear filter class of CT system identification methods.

4.1 Preliminaries - A simple case

For an easier understanding, consider a first order CT system defined by the following differential
equation

dy0(t)

dt
= −a0y0(t) + b0u(t) (6)

where y0(t) is the true system output.
Define the n-th order CT partial moment of a signal v(t) by

Mv
n(T ) =

∫ T

0

tn

n!
v(t)dt (7)

Notice that the CT partial moment is the standard CT moment truncated to a finite interval [0, T ].
First, compute the first order CT partial moment of the differential equation (6)

∫ T

0
t
dy0(t)

dt
dt = −a0

∫ T

0
ty0(t)dt+ b0

∫ T

0
tu(t)dt (8)

After an integration by parts
∫ x2

x1
f(x)g′(x)dx = [f(x)g(x)]x2

x1
−
∫ x2

x1
f ′(x)g(x)dx of the right-hand side

term, the following output formulation is obtained

y0(T ) = −a0
M

y0
1 (T )
T + b0

Mu
1 (T )
T +

M
y0
0 (T )
T

(9)

Second, because the true output y0(t) is inaccessible, it is substituted by the measured output y(t)
which is disturbed by a noise assumed with zero mean. Then, the corresponding output formulation
has a variance depending on the interval defined by T . It can be shown that a value Topt of T , linked
to the system settling time, permits a minimum variance to be obtained (see Section A.3 in [31]) 3.
Thus, to keep this minimum variance at each time t and also to avoid an increasing computation time
when T increases, the CT reinitialized partial moments have been introduced in [36]. The principle
consists of using a sliding window of width T̂ for all t, where T̂ is an estimation of Topt.
Let us define the n-th order CT RPM (continuous-time reinitialized partial moment) of a signal v(t)
by

Mv
n(t) =

∫ T̂

0
τnv(t− T̂ + τ)dτ (10)

3. For the first order system defined by (6) and with the assumption of a zero-mean white noise, Topt =
√

3
a0

.
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where T̂ is the design parameter called the reinitialization parameter.
Third, substitute y0(t) by the measured output y(t) in (9) and consider the CT RPM rather than the
CT partial moment, the estimation ŷ(t) for all t built with y(t) becomes

ŷ(t) = −â0
My

1 (t)

T̂
+ b̂0

Mu
1 (t)

T̂
+

My
0 (t)

T̂
(11)

Fourth, using the variable change µ = T̂ − τ , the three CT RPM in the right-hand side term of the
previous equation become

Mv
1 (t) = T̂

∫ T̂
0

T̂−µ

T̂
v(t− µ) dµ with v = y or u

My
0 (t) = T̂

∫ T̂
0

1

T̂
y(t− µ) dµ

(12)

which are the following convolution products

Mv
1 (t) = T̂ m(t) ∗ v(t) with v = y or u

My
0 (t) = T̂

(
δ(t)− dm(t)

dt

)
∗ y(t) (13)

where

m(t) =

{
T̂−t

T̂
if t ∈

[
0, T̂

]

0 elsewhere
δ(t) is the Dirac function
and ∗ is the convolution product

(14)

Notice that δ(t) is introduced in the convolution product My
0 (t) to remove the Dirac function due to

the derivative of the discontinuity of m(t) at t = 0.
Then, the first order CT RPM model is described by convolution products

ŷ(t) = −â0(m(t) ∗ y(t)) + b̂0(m(t) ∗ u(t)) +
(
δ(t)− dm(t)

dt

)
∗ y(t) (15)

where m(t) is an implicit FIR filter and T̂ is the design parameter chosen in the neighbourhood of
Topt.
These are the four main steps which illustrate the origin of the CT RPM model. For the first order
CT system, the computations are simple. For higher order systems, a fundamental equation must be
introduced.

4.2 Generalization

4.2.1 Fundamental equation

The objective of the fundamental equation is to describe the behaviour of a linear system on the
interval [0, T ] from input-output data as shown in Figure 1.
Consider a SISO linear system defined by the following minimal state-space representation

dx(t)
dt = Ax(t) +Bu(t)

y0(t) = Cx(t) +Du(t)
(16)

where x(t) ∈ R
na , y(t) ∈ R and u(t) ∈ R. The system can also be represented by its transfer function

and a free output due to the initial conditions x(0)

Y0(s) = G(s)U(s) + L(s)x(0) (17)
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System
u(t) y0(t)

u(t)

t

y0(t)

t

System
uT (t) ỹ(t)

uT (t)

t

ỹ(t)

t

True input True output

Artificial input
Artificial output

0 T 0 T

yT (t) Free output

Figure 1 – Principle of the partial moment formulation in the CT domain

with
G(s) = C (sI −A)−1B +D

=
b0+b1s+...+bnb

snb

a0+a1s+...+ana−1sna−1+sna
, na ≥ nb

L(s) = C (sI −A)−1 =

[
L1(s) · · · Lna(s)

]

a0+a1s+...+ana−1sna−1+sna

(18)

where Ln(s) = l0,n + l1,ns+ . . .+ lna−1,ns
na−1.

Suppose that the system excitation is an artificial input uT (t) defined as the true input on the interval
[0, T ] and zero for t > T as shown in Figure 1. Thus, the corresponding artificial output ỹ(t) is
composed of two components : yT (t) = y0(t) on [0, T ] and a free output due to x(T ) on [T,∞]. The
corresponding Laplace transform of ỹ(t) is given by

Ỹ (s) = YT (s) + e−TsL(s)x(T ) (19)

According to (17), the above equation can also be written as follows

Ỹ (s) = G(s)UT (s) + L(s)x(0) (20)

With both previous equations, the fundamental equation is deduced

G(s)UT (s) + L(s)x(0) = YT (s) + e−TsL(s)x(T ) (21)

Both signals YT (s) and UT (s) can be replaced by their corresponding Taylor series expansions in a
neighbourhood of s = 0 defined by

YT (s) =
∞∑
n=0

(−1)nsnMy0
n (T )

UT (s) =
∞∑
n=0

(−1)nsnMu
n(T )

(22)

with Mv
n(T ), the partial moment defined by (7). Similarly, e−Ts can be substituted by its Taylor series

expansion at s = 0 given by

e−Ts =

∞∑

n=0

(−1)n
sn

n!
Tn (23)

The fundamental equation can be arranged in a matrix form, where each row corresponds to a power
of s, as follows

Mu(T )b+ ILx(0) = My0(T )a+TLx(T ) (24)
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where Mu(T ) ∈ R
∞×(nb+1), My0(T ) ∈ R

∞×(na+1), b ∈ R
(nb+1)×1, a ∈ R

(na+1)×1, I ∈ R
∞×na , T ∈

R
∞×na and L ∈ R

na×na . The above matrices and vectors are defined as follows

Mv(T ) =




Mv
0(T ) 0 . . . . . . 0

−Mv
1(T ) Mv

0(T ) 0
...

Mv
2(T ) −Mv

1(T ) Mv
0(T ) 0 . . .

...
...

...
. . .

...
...

...




(25)

with v = u or y0,

b =




b0
...

bnb


 , a =




a0
...

ana−1

1


 , I =




1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

0
... 0

...
...

...




(26)

T =




1 0 . . . 0

−T 1
. . .

...

T 2
/
2! −T

. . . 0

−T 3
/
3! T 2

/
2!

. . . 1
...

... −T
...

...
...




, L =




l0,1 . . . l0,na

l1,1 . . . l1,na

...
...

lna−1,1 . . . lna−1,na


 (27)

4.2.2 Partial moment formulation

The fundamental equation (24) allows the definition of the state vector x(t) at instants t = 0 and
t = T for any state-space representation and for any orders na and nb. The objective is to obtain the
expression of y0(T ). To simplify the coefficients of L, notice that a particular state-space representation
with y0(T ) = [ 0 . . . 0 1 ]x(T ) can be considered.
For an na-th order system, by using only the rows na + 1 to 2na of (24), a set of na equations is
obtained without the components of x(0). This set allows the computation of y0(T ) as follows

y0(T ) = b0β
u
0(T ) + . . .+ bnb

βu
nb
(T ) + a0α

y0
0 (T ) + . . .

+ana−1α
y0
na−1(T ) + γy0(T )

(28)

where βu
n(T ) is a function of the partial moments Mu

i (T ) with i = 0, . . . , 2na − 1, and α
y0
n (T ) and

γy0(T ) are functions of the partial moments My0
i (T ) with i = 0, . . . , 2na − 1. These functions are

dependent on the system structure, i.e. orders na and nb, and are given by the fundamental equation
(24). The example 1 shows the method to obtain y0(T ) for a second order system.

Example 1 Consider a CT linear system defined by the following transfer function

G(s) =
b0 + b1s+ b2s

2

a0 + a1s+ s2
(29)
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This transfer function can be written in a state-space representation (16) with the so-called observable
canonical form

A =

[
0 −a0
1 −a1

]
, B =

[
b0 − b2a0
b1 − b2a1

]
, C =

[
0 1

]
, D = b2 (30)

By selecting na = 2 and nb = 2 in the fundamental equation (24), the first four rows of this equation
become 



Mu
0(T ) 0 0

−Mu
1(T ) Mu

0(T ) 0
Mu

2(T ) −Mu
1(T ) Mu

0(T )
−Mu

3(T ) Mu
2(T ) −Mu

1(T )







b0
b1
b2


+




1 0
0 1
0 0
0 0



[
1 0
0 1

] [
x1(0)
x2(0)

]

=




My0
0 (T ) 0 0

−My0
1 (T ) My0

0 (T ) 0
My0

2 (T ) −My0
1 (T ) My0

0 (T )
−My0

3 (T ) My0
2 (T ) −My0

1 (T )







a0
a1
1


+




1 0
−T 1
T 2

2 −T
−T 3

6
T 2

2



[
1 0
0 1

] [
x1(T )
x2(T )

]

(31)

By using the third and fourth rows, the following equation is obtained

y0(T ) = b0β
u
0(T ) + b1β

u
1(T ) + b2β

u
2(T ) + a0α

y0
0 (T ) + a1α

y0
1 (T ) + γy0(T ) (32)

where
βu
0(T ) =

TMu
2 (T )−3Mu

3 (T )
T 2/2

βu
1(T ) =

−TMu
1 (T )+3Mu

2 (T )
T 2/2

βu
2(T ) =

TMu
0 (T )−3Mu

1 (T )
T 2/2

+ u(T )

α
y0
0 (T ) = −

(
TM

y0
2 (T )−3M

y0
3 (T )

T 2/2

)

α
y0
1 (T ) = −

(
−TM

y0
1 (T )+3M

y0
2 (T )

T 2/2

)

γy0(T ) = −
(
TM

y0
0 (T )−3M

y0
1 (T )

T 2/2

)

(33)

�

4.2.3 Properties of the partial moment formulation

In the CT domain, the noise appears with the measurements of the signal. The signals u(t) and
y(t) must be considered at sampling instants, i.e. u(kts) and y(kts) where ts is the sampling period.
The partial moments Mu

n(T ) and My
n(T ) must be evaluated from these DT data using a numerical

integration method. Therefore, two types of errors must be considered. These are due to the noise and
to the numerical integration method. The latter depends on the sampling period and the numerical
integration method. In practice, the sampling period is small enough in relation to the system dynamics
and Simpson’s rule is used for the integrations. In this study, this numerical error is assumed to be
negligible. This hypothesis has been a posteriori verified in [36].
Consider the disturbed output y(t) = y0(t) + w(t) at instants t = kts. The estimated signal ŷ(T ) of
y0(T ), that is obtained from disturbed output y(t), is given by

ŷ(T ) = b0β
u
0(T ) + . . .+ bnb

βu
nb
(T ) + a0α

y
0(T ) + . . .+ ana−1α

y
na−1(T ) + γy(T ) (34)
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By noting that αy
i (T ) = α

y0
i (T )+αw

i (T ) and γy(T ) = γy0(T )+γw(T ), the corresponding estimation
error defined by ε(T ) = ŷ(T )− y0(T ) is given by

ε(T ) = a0α
w
0 (T ) + . . .+ ana−1α

w
na−1(T ) + γw(T ) (35)

This estimation error depends on the coefficients an of the denominator. The statistical study depends
on the numerical integration method which computes the functions αw

n (T ) and γw(T ). The general
case is very complex. But, the study of a small order system allows the generalization of the pro-
perties. Moreover, the computation of the statistical properties of ε(T ) is simplified by implementing
the rectangle method to perform the numerical integration. A second order system case is studied in
Example 2.

Example 2 Consider the oscillating CT system defined by (1) with sampling period ts = 0.2s. By
using the rectangle method, the following approximation can be made in the equation (33) for the noise
part αw

n (T ) and γw(T )

Mw
0 (T ) ≡ Mw

0 (Kts) = ts
K−1∑
i=0

w(its)

Mw
1 (T ) ≡ Mw

1 (Kts) = t2s
K−1∑
i=0

iw(its)

Mw
2 (T ) ≡ Mw

2 (Kts) = t3s
K−1∑
i=0

i2

2 w(its)

Mw
3 (T ) ≡ Mw

3 (Kts) = t4s
K−1∑
i=0

i3

6 w(its)

(36)

With the hypothesis of a zero-mean white noise w(kts), it can be proved that the statistical mean
E {ε(Kts)} of the estimation error is zero. An expression of the variance var {ε(Kts)} is obtained and
is plotted in Figure 2. It is clear that the variance is minimal at Topt = Koptts = 20ts.

�

Actually, the estimation error variance of the first order system (6) is minimal at T = Topt =
√
3/a0.

For an oscillating second order system, it is at T = Topt = 2tm where tm is the (zero to 90 percent) rising
time. For higher order systems or using of another integration method, the analytical expression of the
variance var {ε(Kts)} in terms of the system parameters can be complex. It is not straightforward to
give the value which leads to the minimum variance. A discussion about the use of different integration
methods with an example is given in Section A.3 in [31]. It is shown that the same value of Topt is
obtained by using the rectangular and Simpson methods.
As a conclusion, the output model (28) based on the partial moment is characterized by the property
of minimum variance for the interval [0, Topt]. Hence, the reinitialized partial moments are introduced

to keep this minimum variance property at each time t. The design parameter T̂ introduced in RPM
must be chosen in the neighbourhood of Topt.

4.2.4 CT RPM formulation

The output CT RPM model is defined from the output model (28) by substituting the partial
moments by the RPM given by (10) and the true output y0 by the disturbed output y. This is further
clarified by studying a second order system.
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Figure 2 – Second order system. Dependence of the estimation error variance on K

Example 3 Consider again the second order CT system introduced in Example 1.
By using the RPM and the disturbed output, the output model given by (32) becomes

ŷ(t) = b̂0β
u
0 (t) + b̂1β

u
1 (t) + b̂2β

u
2 (t) + â0α

y
0(t) + â1α

y
1(t) + γy(t) (37)

where the functions in the right-hand side term are functions of RPM, e.g. αy
0(T ) can be expressed as

αy
0(t) =

My
3 (t)

T̂ 2
− My

2 (t)

T̂

=
∫ T̂
0

τ3y(t−T̂+τ)

T̂ 2
dτ −

∫ T̂
0

τ2y(t−T̂+τ)

T̂
dτ

=
∫ T̂
0 f0(τ)y(t− T̂ + τ)dτ

(38)

Notice that the term 1/n! in the definition of partial moment (7) disappears in the definition of RPM
(10). It explains the different functions between (33) and the above equation.
In the same way, all functions can be defined as follows

βu
0 (t) = −

∫ T̂
0 f0(τ)u(t− T̂ + τ)dτ

βu
1 (t) = −

∫ T̂
0 f1(τ)u(t− T̂ + τ)dτ

βu
2 (t) = −

∫ T̂
0 f2(τ)u(t− T̂ + τ)dτ + u(t)

αy
0(t) =

∫ T̂
0 f0(τ)y(t− T̂ + τ)dτ

αy
1(t) =

∫ T̂
0 f1(τ)y(t− T̂ + τ)dτ

γy(t) =
∫ T̂
0 f2(τ)y(t− T̂ + τ)dτ

(39)
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where

f0(τ) =
τ2(τ−T̂ )

T̂ 2

f1(τ) =
τ(2T̂−3τ)

T̂ 2

f2(τ) =
2(3τ−T̂ )

T̂ 2

(40)

�

4.2.5 Representation with FIR filter

The implementation for any na-th order system can be simplified by rewriting βu
n(t), α

y
n(t) and

γy(t) as responses of a FIR filter. In this context, a second order system is studied in the following
example.

Example 4 Consider again the same second order CT system. The variable change µ = T̂ − τ in
(39) yields

βu
0 (t) = m(t) ∗ u(t)

βu
1 (t) =

dm(t)
dt ∗ u(t)

βu
2 (t) =

d2m(t)
dt2

∗ u(t) + u(t)
αy
0(t) = −m(t) ∗ y(t)

αy
1(t) = −dm(t)

dt ∗ y(t)
γy(t) =

(
δ(t)− d2m(t)

dt2

)
∗ y(t)

(41)

where

m(t) =
(T̂ − t)2t

T̂ 2
with t ∈

[
0, T̂

]
(42)

�

This example can be generalized to an na-th order system defined by the transfer function G(s) in
(18). The true response y0(t) to the input u(t) of this system can be modeled by the CT RPM model
defined by

ŷ(t) =

nb∑

j=0

b̂jβ
u
j (t) +

na−1∑

i=0

âiα
y
i (t) + γy(t) (43)

where
βu
0 (t) = m(t) ∗ u(t)

αy
0(t) = −m(t) ∗ y(t)

βu
j (t) =

djm(t)
dtj

∗ u(t) for 1 ≤ j ≤ nb

αy
i (t) = −dim(t)

dti
∗ y(t) for 1 ≤ i < na

γy(t) =
(
δ(t)− dnam(t)

dtna

)
∗ y(t)

m(t) = (T̂−t)na tna−1

(na−1)!T̂na
with t ∈

[
0, T̂

]

(44)

m(t) is a FIR filter called the CT RPM filter.

4.2.6 Parameter estimation

The CT RPM model (43) can be rewritten in a linear regression form

ŷ(t) = ϕT (t)θ̂RPM + γy(t) (45)
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where
ϕ(t) =

[
αy
0(t), . . . , α

y
n−1(t), β

u
0 (t), . . . , β

u
m(t)

]T

θ̂RPM =
[
â0, . . . , ân−1, b̂0, . . . , b̂m

]T (46)

Assuming that N discrete values of the input-output signals are measured, the least-squares estimate
of θ̂RPM is given by

θ̂RPM =

[
N∑

i=K̂

ϕ(its)ϕ
T (its)

]−1
N∑

i=K̂

ϕ(its) (y(its)− γy(its)) (47)

where K̂ corresponds to T̂ = K̂ts that is an estimation of Topt.

Remarque 1 Different equation error methods can be applied, such as the iterative instrumental
variable approach with an auxiliary model [38, 39], to eliminate the bias.

Remarque 2 Notice that the implicit FIR filter and the above least-squares estimate allow the removal
of the transient effect of an infinite impulse response filter. Effectively, in the least-squares estimate
(47), the K̂ first measurements are not considered.

Remarque 3 The MISO transfer function model with a common denominator can be considered. In
that case, the regressor and the parameter vector in (45) become

ϕ(t) =
[
αy
0(t), . . . , α

y
n−1(t), β

u1

0 (t), . . . , βu1
m1

(t), . . . , β
unu

0 (t), . . . , β
unu
mnu

(t)
]T

θ̂RPM =
[
â0, . . . , ân−1, b̂

1
0, . . . , b̂

1
m1

, . . . , b̂nu

0 , . . . , b̂nu
mnu

]T (48)

where nu is the considered input number.
The MIMO case with ny outputs can be considered as ny MISO models. Notice that, in the general
MIMO case, the variance of the estimated model may increase.

4.2.7 Implementation

The Matlab routines lsctrpm and ivctrpm, that implement (47) and the iterative instrumental
variable approach for MIMO systems, respectively, can be downloaded from http://laii.univ-poitiers.
fr/ouvrard/CTRPM. The implementation is described in this subsection.
By referring to the CT RPM output model (43), αy

i (t), β
u
i (t) and γy(t) are computed by performing

the convolution products between m(t) or its derivatives and the input-output signals. In practice, the
following expressions are implemented

αy
i (t) = −

∫ T̂
0 fi(µ)y(t− T̂ + µ)dµ

βu
i (t) =

∫ T̂
0 fi(µ)u(t− T̂ + µ)dµ

γy(t) = −
∫ T̂
0 fna(µ)y(t− T̂ + µ)dµ

(49)

where

f0(µ) =
µna (T̂−µ)na−1

(na−1)!T̂na

fi(µ) = −dfi−1(µ)
dµ

(50)

The following recursive form allows the computation of fi(µ) for i = 0, . . . , na − 1

fi(µ) =
(−1)i

(na−1)!T̂na

i∑
j=0

(−1)j i!
j!(i−j)!

(na−1)!na!
(na−j−1)!(na−i+j)!µ

na−i+j(T̂ − µ)na−j−1 (51)
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The integrations in (49) are computed using Simpson’s rule, e.g. for αy
i (t)

αy
i (t) = − ts

3

K̂∑
k=2

[fi((k − 2)ts)y(t− (K̂ − l + 2)ts)+

4fi((k − 1)ts)y(t− (K̂ − l + 1)ts) + fi(kts)y(t− (K̂ − l)ts)
] (52)

where k and K̂ are even.
The function βu

i (t) can be computed in a similar way to the expression given in (52). However, if u(t)
is a piecewise constant input, e.g. the input is generated by a digital to analog converter, the rectangle
method has to be implemented to compute the integration. Consequently, the following expression is
obtained

βu
i (t) =

K̂−1∑

k=0

F sq
i (kts)u(t− (K̂ − k)ts) (53)

where the function F sq
i (kts) is given by

F sq
i (kts) =

(−1)i

(na−1)!(K̂ts)na

i∑
j=0

(−1)j i!
j!(i−j)!

(na−1)!na!
(na−j−1)!(na−i+j)!

na−j−1∑
r=0

(−1)r (na−j−1)!
r!(na−j−1−r)!(K̂ts)

na−j−1−r
{

((k+1)ts)na−i+j+r+1−(kts)na−i+j+r+1

na−i+j+r+1

} (54)

4.3 Applications

The RPM model properties have been used for two decades in different application fields such as
electrical engineering [4, 5, 7] or electronics [8]. Generally, the RPM model parameters are used to
initialize an optimization algorithm in physical parameter estimations.
The CT RPM model has been included in the CONTSID Matlab toolbox [13] and the routine is called
lsrpm. This Matlab toolbox can be downloaded from http://www.cran.uhp-nancy.fr/contsid/. A com-
parison with other methods implemented in the CONTSID Matlab toolbox is described in [14, 13, 23],
where the interesting performance of the RPM model has been shown.
A subspace-based method for CT MIMO systems identification has been proposed in [24]. This ap-
proach more precisely consists of introducing the RPM FIR filter to build a particular sampled input-
output algebraic relationship to which a MOESP-like algorithm can be applied.
The CT RPM model has been compared with five other CT system identification methods (Section
2.3.1 in [31]) in terms of initialization of optimization algorithms. This study highlights the suitable
initialization performed by the CT RPM model.
New algorithms have been introduced in Chapter 3 in [31]. These so-called pseudo-output error al-
gorithms are optimization algorithms based on pseudo-sensitivity functions with a filter, such as the
RPM FIR filter, which gives a global asymptotic convergence if a positive realness condition is satisfied
[32, 34].

5 Discrete-time RPM model

If, in the CT framework, an integration of the differential equation is obvious to approximate the
unmeasurable derivatives, in the DT framework, the application of an integration (a summation) is
less natural. However, it will be shown in the following that this approach can also be rewritten as an
implicit data filtering, and for the DT identification methods, an explicit data filtering is often used.
This is an implicit suitable property of the DT RPM model.
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5.1 Preliminaries

In the DT case, the approach to introducing the DT RPM model follows the same steps as in the
CT case.
Define the n-th order DT partial moment of a sequence v(k) by

Cv
n(K) =

K∑

k=n

k!

(k − n)!
v(k) (55)

Notice that the DT partial moment is the standard factorial DT moment truncated to a finite interval
[n,K].
The computation of the DT partial moment of the system difference equation gives an output for-
mulation with the minimum variance property for a particular time window K = Kopt. To keep
this minimum variance at each instant k, the n-th order DT RPM (discrete-time reinitialized partial
moment) of a signal v(k) has been introduced and is defined by

Cv
n(k) =

K̂−1∑

j=n

An
j v(k − K̂ + j) (56)

where An
j = j!

(j−n)! and K̂ is an estimation of Kopt. K̂ is the design parameter called the reinitialization

parameter 4.
The computation of the DT RPM of the system difference equation gives the DT RPM model. See
the following section for the general case.

5.2 Generalization

5.2.1 Fundamental equation

As in the CT case, the fundamental equation allows consideration of the general case. The objective
is to describe the behaviour of a DT linear system on the interval [0,K − 1] based on the input-output
data as shown in Figure 1 but with discrete-time signals.
Consider a SISO linear system defined by the following minimal state-space representation

x(k + 1) = Ax(k) +Bu(k)
y0(k) = Cx(k) +Du(k)

(57)

where x(k) ∈ R
na , y0(k) ∈ R and u(k) ∈ R. The system can also be represented by its z transfer

function and a free output due to the initial conditions x(0)

Y0(z) = G(z)U(z) + L(z)x(0) (58)

with

G(z) = C (zI −A)−1B +D =
b0+b1z−1+...+bnb

z−nb

1+a1z−1+...+anaz
−na

L(z) = C (zI −A)−1 =

[
L1(z) · · · Lna(z)

]

1+a1z−1+...+anaz
−na

(59)

where Ln(z) = l0,n + l1,nz
−1 + . . .+ lna−1,nz

−(na−1).
Suppose that the system excitation is an artificial input uK(k). It is defined as the true input on the
interval [0,K − 1] and is equal to zero for k ≥ K. Also, assume that x(0) is the initial condition. The

4. Notice that both CT and DT design parameters, T̂ in (10) and K̂ in (56), are linked by T̂ = K̂ ts.
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corresponding artificial output ỹ(k) consists of yK(k) = y0(k) on the interval [0,K − 1] and a free
output due to x(K) on the interval [K,∞ [ . The corresponding z transform of ỹ(k) yields

Ỹ (z) = YK(z) + z−KL(z)x(K) (60)

According to (58), ỹ(k) in the z domain can also be written as follows

Ỹ (z) = G(z)UK(z) + L(z)x(0) (61)

With both previous equations, the fundamental equation is deduced

G(z)UK(z) + L(z)x(0) = YK(z) + z−KL(z)x(K) (62)

Both signals YK(z) and UK(z) can be substituted by their corresponding Taylor series expansions in
a neighbourhood of z−1 = 1 defined by

YK(z) =
∞∑
n=0

(z−1−1)n

n! Cy0
n (K − 1)

UK(z) =
∞∑
n=0

(z−1−1)n

n! Cu
n(K − 1)

(63)

with Cv
n(K − 1), the partial moment defined by (55). The fundamental equation can be arranged in a

matrix form, where each row corresponds to a power of z, as follows

Cu(K − 1)Nbb+ INLLx(0) = Cy0(K − 1)Naa+KNLLx(K) (64)

where Cu(K − 1) ∈ R
∞×(nb+1), Cy0(K − 1) ∈ R

∞×(na+1), b ∈ R
(nb+1)×1, a ∈ R

(na+1)×1, I ∈ R
∞×na ,

Nb ∈ R
(nb+1)×(nb+1), Na ∈ R

(na+1)×(na+1), NL ∈ R
na×na , K ∈ R

∞×na and L ∈ R
na×na . The above

matrices and vectors are defined as follows

Cv(K − 1) =




Cv
0 (K − 1) 0 . . . . . . 0

Cv
1 (K − 1) Cv

0 (K − 1) 0
...

Cv
2 (K − 1) 2Cv

1 (K − 1) Cv
0 (K − 1) 0

...

Cv
3 (K − 1) 3Cv

2 (K − 1) 3Cv
1 (K − 1) Cv

0 (K − 1)
. . .

...
...

...
...

. . .




(65)

with v = u or y0,

b =




b0
...

bnb


 , a =




1
a1
...

ana


 , I =




1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

0
... 0

...
...

...




(66)

Nm =




1 1 1 1 . . . . . .
0 1 2 3 . . . . . .
0 0 2 6 . . . Ni,j

0 0 0 6 . . . . . .
...

...
...

...




(67)
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with m = b, a or L, and Ni,j =
(j−1)!
(j−i)! for the i-th row and the j-th column,

K =




1 0 0 . . . . . .
K 1 0 . . . . . .

K(K − 1) 2K 1 0 . . .
K(K − 1)(K − 2) 3K(K − 1) 3K 1 . . .

...
...

...
...




(68)

L =




l0,1 . . . l0,na

l1,1 . . . l1,na

...
...

lna−1,1 . . . lna−1,na


 (69)

In the matrices Cv(K − 1) and K, the numbers, which appear in the lower triangular part, are given

by (i−1)!
(i−j)!(j−1)! for the i-th row and the j-th column

5.2.2 Partial moment formulation and its properties

The fundamental equation (64) allows the computation of y0(K) for any state-space representation
and for any orders na and nb by considering the rows na + 1 to 2na. To simplify the coefficients of L,
consider a particular state-space representation which yields y0(K) = [ 0 . . . 0 1 ]x(K).
The partial moment formulation of y0(K) is given by

y0(K) = b0β
u
0(K) + . . .+ bnb

βu
nb
(K) + a1α

y0
1 (K) + . . .+ anaα

y0
na(K) + γy0(K) (70)

where βu
n(K) is a function of the partial moments Cu

i (K − 1) with i = 0, . . . , 2na − 1, and α
y0
n (K)

and γy0(K) are functions of the partial moments Cy0
i (K − 1) with i = 0, . . . , 2na − 1. These functions

are given by the fundamental equation (64) for any orders na and nb. The example 5 gives the way to
obtain y0(K) for a second order system.

Example 5 Consider a DT linear system defined by the following z transfer function

G(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(71)

This transfer function can be written in a state-space representation (57) with

A =

[
0 −a2
1 −a1

]
, B =

[
b2 − b0a2
b1 − b0a1

]
,

C =
[
0 1

]
, D = b0, x(k) =

[
x1(k)
x2(k)

] (72)
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By selecting na = 2 and nb = 2, the first four rows of the fundamental equation (64) become




Cu
0 (K − 1) 0 0

Cu
1 (K − 1) Cu

0 (K − 1) 0
Cu
2 (K − 1) 2Cu

1 (K − 1) Cu
0 (K − 1)

Cu
3 (K − 1) 3Cu

2 (K − 1) 3Cu
1 (K − 1)







1 1 1
0 1 2
0 0 2






b0
b1
b2




+




1 0
0 1
0 0
0 0



[
1 1
0 1

] [
0 1
1 0

] [
x1(0)
x2(0)

]

=




Cy0
0 (K − 1) 0 0

Cy0
1 (K − 1) Cy0

0 (K − 1) 0
Cy0
2 (K − 1) 2Cy0

1 (K − 1) Cy0
0 (K − 1)

Cy0
3 (K − 1) 3Cy0

2 (K − 1) 3Cy0
1 (K − 1)







1 1 1
0 1 2
0 0 2






1
a1
a2




+




1 0
K 1

K(K − 1) 2K
K(K − 1)(K − 2) 3K(K − 1)



[
1 1
0 1

] [
0 1
1 0

] [
x1(K)
x2(K)

]

(73)

The use of the third and fourth rows yields the following equation

y0(K) = b0β
u
0(K) + b1β

u
1(K) + b2β

u
2(K) + a1α

y0
1 (K) + a2α

y0
2 (K) + γy0(K) (74)

where
βu
0(K) =

−Cu
3 (K−1)+(K−1)Cu

2 (K−1)
K(K−1) + u(K)

βu
1(K) =

−Cu
3 (K−1)+(K−4)Cu

2 (K−1)+2(K−1)Cu
1 (K−1)

K(K−1)

βu
2(K) =

−Cu
3 (K−1)+(K−7)Cu

2 (K−1)+2(2K−5)Cu
1 (K−1)+2(K−1)Cu

0 (K−1)
K(K−1)

α
y0
1 (K) =

C
y0
3 (K−1)−(K−4)C

y0
2 (K−1)−2(K−1)C

y0
1 (K−1)

K(K−1)

α
y0
2 (K) =

C
y0
3 (K−1)−(K−7)C

y0
2 (K−1)−2(2K−5)C

y0
1 (K−1)−2(K−1)C

y0
0 (K−1)

K(K−1)

γy0(K) =
C

y0
3 (K−1)−(K−1)C

y0
2 (K−1)

K(K−1)

(75)

�

The estimated signal ŷ(K) of y0(K), that is obtained from the disturbed output measurements y(k) =
y0(k) + w(k), is given by

ŷ(K) = b̂0β
u
0(K) + . . .+ b̂nb

βu
nb
(K) + â1α

y
1(K) + . . .+ ânaα

y
na(K) + γy(K) (76)

As in the CT case, it was shown [36, 31] that any linear stable DT system can be represented by the
output model (76) with a minimum variance by selecting K = Kopt. In practice, the choice of Kopt

corresponds to Topt/ts discussed in Section 4.2.3 for a first or second order CT system. Hence, the
reinitialized partial moments are introduced to estimate the output model with minimum variance at
each instant k.

5.2.3 DT RPM formulation

The output DT RPM model can be defined from the output model (76) as follows

ŷ(k) = b̂0β
u
0 (k) + . . .+ b̂nb

βu
nb
(k) + â1α

y
1(k) + . . .+ ânaα

y
na(k) + γy(k) (77)
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where βu
n(k), α

y
n(k) and γy(k) are functions of the RPM.

It has been shown in [36] that the RPM can be expressed in a recursive form

Cv
n(k) = Cv

n(k − 1) +An
K̂
v(k − 1)− nCv

n−1(k) (78)

with
Cv
0 (k) = Cv

0 (k − 1) + v(k − 1)− v(k − 1− K̂) (79)

Similarly, the functions βu
n(k), α

y
n(k) and γy(k) can be formulated in a recursive form. In this context,

a second order system is studied in the following example.

Example 6 Consider again the second order DT system introduced in Example 5.
The output model as given by (74) can be formulated using the RPM in their recursive expressions

Cv
3 (k) = Cv

3 (k − 1) +A3
K̂
v(k − 1)− 3Cv

2 (k)

Cv
2 (k) = Cv

2 (k − 1) +A2
K̂
v(k − 1)− 2Cv

1 (k)

Cv
1 (k) = Cv

1 (k − 1) +A1
K̂
v(k − 1)− Cv

0 (k)

(80)

Then the RPM model is obtained

ŷ(k) = b̂0β
u
0 (k) + b̂1β

u
1 (k) + b̂2β

u
2 (k) + â1α

y
1(k) + â2α

y
2(k) + γy(k) (81)

with the following recursive expressions

βu
0 (k) =

−Cu
3 (k)+(K̂−1)Cu

2 (k)

K̂(K̂−1)
+ u(k)

βu
1 (k) = βu

0 (k − 1)

βu
2 (k) = βu

1 (k − 1)

γy(k) =
Cy

3 (k)−(K̂−1)Cy
2 (k)

K̂(K̂−1)

αy
1(k) = γy(k − 1)− y(k − 1)

αy
2(k) = αy

1(k − 1)

(82)

�

This approach can be extended to an na-th order system. Similar recursive expressions can be derived.
Consequently, the implementation is simplified and the computational time is reduced.

5.2.4 Representation with FIR filter

The computational time can be further reduced by expressing the functions βu
n(k), α

y
n(k) and γy(k)

as responses of a FIR filter. In this context, consider the following example.

Example 7 Consider again the same second order DT system (71) and use the recursive equations
as given in (82).
βu
0 (k) and γy(k) can be rewritten as follows

βu
0 (k) =

−

K̂−1∑
i=3

i(i−1)(i−2)u(k−K̂+i)+(K̂−1)
K̂−1∑
i=2

i(i−1)u(k−K̂+i)

K̂(K̂−1)
+ u(k)

γy(k) =

K̂−1∑
i=3

i(i−1)(i−2)y(k−K̂+i)−(K̂−1)
K̂−1∑
i=2

i(i−1)y(k−K̂+i)

K̂(K̂−1)

(83)
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and can be reformulated

βu
0 (k) =

K̂−2∑
i=0

miu(k − i)

γy(k) = −
K̂−2∑
i=0

miy(k − i) +m0y(k)

(84)

where

mi =
(i+ 1)(K̂ − i)(K̂ − i− 1)

K̂(K̂ − 1)
(85)

The other functions can be deduced from βu
0 (k) and γy(k) using the recursive expressions.

�

This example can be generalized to an na-th order system defined by the z transfer function G(z) in
(59). The true response y0(k) to the input u(k) of this system can be modeled by the DT RPM model
defined by

ŷ(k) =

nb∑

m=0

b̂mβu
m(k) +

na∑

n=1

ânα
y
n(k) + γy(k) (86)

where

βu
0 (k) =

K̂−na∑
i=0

miu(k − i)

βu
m(k) = βu

m−1(k − 1), m = 1, . . . , nb

γy(k) = −
K̂−na∑
i=1

miy(k − i)

αy
1(k) = γy(k − 1)− y(k − 1)

αy
n(k) = αy

n−1(k − 1), n = 1, . . . , na

mi =
(i+1)(i+2)...(i+na−1)Ana

K̂−i

(na−1)!Ana

K̂

(87)

5.2.5 Parameter estimation

The DT RPM model (86) can be rewritten in a linear regression form

ŷ(k) = φT (k)θ̂RPM + γy(k) (88)

where

θ̂RPM =
[
â1, · · · , âna , b̂0, · · · , b̂nb

]T

φ(k) =
[
αy
1(k), · · · , α

y
na(k), β

u
0 (k), · · · , βu

nb
(k)
]T (89)

Assuming that N values of the input-output signals are measured, the least-squares estimate of θ̂RPM

is given by

θ̂RPM =

[
N∑

k=K̂−na

φ(k)φT (k)

]−1
N∑

k=K̂−na

φ(k)(y(k)− γy(k)) (90)

where K̂ is an estimation of Kopt.

Remarque 4 As in the CT case, different equation error methods can be applied. Moreover, the
implicit FIR filter and the above implementation allow the removal of the transient effect of an infinite
impulse response filter because in the least-squares estimate (90), the K̂ − na first measurements are
not considered.
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Remarque 5 The MISO transfer function model with a common denominator can be considered. In
that case, the parameter vector and the regressor in (89) become

θ̂RPM =
[
â1, . . . , âna , b̂

1
0, . . . , b̂

1
n1
b

, . . . , b̂nu

0 , . . . , b̂nu

nnu
b

]T

φ(k) =
[
αy
1(k), . . . , α

y
na(k), β

u1

0 (k), . . . , βu1

n1
b

(k), . . . , β
unu

0 (k), . . . , β
unu

nnu
b

(k)
]T (91)

where nu is the considered input number.
The MIMO case with ny outputs can be considered as ny MISO models.

Contrary to the CT case, the implementation of the DT RPM model estimation is straightforward.
The Matlab routines lsdtrpm and ivdtrpm, that implement (90) and the iterative instrumental variable
approach for MIMO systems, respectively, can be downloaded from http://laii.univ-poitiers.fr/ouvrard/
DTRPM.

5.3 Applications

Until now, the RPM models have been used mainly in the CT area. But, recent papers [28, 29]
have highlighted the problem of convergence of discrete-time optimization algorithms, particularly, the
OE, PEM and N4SID algorithms 5. In [19], it has been shown that these problems are due to the bias
introduced by the ARX model which is used as the initial value for the optimization algorithms. This
is a typical problem of bad initialization, i.e., a convergence to a secondary optimum. The solution
proposed in [19] to reduce the bias of the ARX model is to use a low-pass data filter. The DT RPM
model does not have this problem because it presents an implicit embedded filter which plays the
same role as the explicit filter for the ARX model. A bias analysis and a comparison study of the DT
RPM and ARX models is given in Section 2.3.2 in [31] and in [33, 25].
Notice also, as for the CT case, that the new pseudo-output error algorithms introduced in Chapter 3
in [31] and in [34, 32] can be applied in the DT framework. The DT RPM FIR filter can be used and
its properties used to good account.

6 Choice of the design parameter

The CT RPM and the DT RPM models require the selection of a design parameter, the reinitia-
lization parameters, T̂ and K̂, respectively. Indeed, these two design parameters are linked because
T̂ = K̂ts. Taking into account this link, only the term K̂ and the DT case are mentioned in this
section.
A wide experience in RPM handling has shown that the quality of the RPM model is not very sensitive
to this choice (See [31], for instance). The selection of K̂ is not more difficult than the selection of the
cutoff frequency and the order of the recommended data filter of an ARX model [19], or any design
parameters of CT system identification methods [14].
The design parameter K̂ allows the adaptation of the RPM model to the nature of the noise :

– If the perturbation is a white output-error noise, i.e. the structure of the system belongs to
the OE model set, then an optimal reinitialization parameter exists, namely K̂wn, for which the
variance of the error is minimal and the bias is highly reduced. For a small system order, K̂wn

can be computed and many experiments [31] led to the following conclusion : the parameter K̂
should be selected such that the value K̂ts (ts, sampling time) is equivalent to the double of
the main time constant for an aperiodic system or the double of the (zero to 90%) rising time
for an oscillating system. But for an higher system order, the optimal value K̂wn can be only

5. Here the OE, PEM and N4SID algorithms refer to the Matlab procedures with the same names in the System
Identification Toolbox.
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found empirically by increasing K̂ progressively. If K̂ = K̂wn, the RPM model is close to an OE
model, i.e. the implicit RPM filter is close to the ideal filter of Steiglitz-McBride [30]. For more
details see Section 2.3.2 in [31] and [33, 25].

– If the perturbation is a white equation-error noise, i.e. the structure of the system belongs to
the ARX model set, then the reinitialization parameter must be equal to na. Consequently, the
RPM model is equivalent to an ARX model and the estimation is unbiased.

– If the perturbation is a coloured noise, i.e. the structure of the system does not belong to the
ARX model set or the OE model set, then the optimal reinitialization parameter is in the interval
]na, K̂wn[.

In practice, the value of K̂ can be selected empirically as follows : K̂ is increased and a standard test,
such as the quadratic criterion or the autocorrelation of the residuals, is evaluated to find the best K̂.
Notice again that an iterative instrumental variable technique with an auxiliary model [38, 39] is
recommended and can also be applied to eliminate the bias in all cases.

7 Conclusion

This paper presents a complete description of the reinitialized partial moments in both CT and
DT cases. The RPM has originated from the partial moment formulation. This formulation had been
introduced to avoid the restriction to impulse or step input and the necessity to calculate moments
on an infinite time interval, two problems which limited the application of moments in system iden-
tification. The complete details of the partial moment formulation are described in this paper. The
developments that lead to the RPM and the implementation are given. Some advice on use allows the
tuning of the design parameter. The RPM model applications are listed. Generally, the RPM models
give a suitable output error method initialization in both CT and DT domains. The implicit embedded
FIR filter yields certain properties to this kind of equation error approach. In continuous-time, the
filter allows approximating of the unmeasurable input-output derivatives. In discrete-time, the filter
plays the same role as the explicit filter for the ARX model estimation.
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