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Abstract

This paper deals with a new modulation technique based on Symmetric Chaos Shift Keying (SCSK) and its receiver structure is described
for optimal synchronization. The Masked Symmetric Chaos Shift Keying (MSCSK) improves both security of information signal compared
to SCSK and demodulation procedure. Optimal synchronization of two identical chaotic systems is performed in the paper. By using
dissipativity theory, a PI control system is proposed according to Linear Matrix Inegality (LMI). The coefficients of PI are resolved using
the MATLAB LMI Toolbox. The proposed controller is simple and can be easily implemented in the demodulator. Simulation results are
presented for the Chua circuit and show the effectiveness of the proposed scheme.

I. Introduction

Mobile communication research undertakes significant efforts to promise security of mobile broadband access and
faster information rate. Spread spectrum techniques for multiple access and interference suppression have been recently
implemented to communication system, such like DSSS or FSSS (Direct Sequence/Hopping frequency Spread Spec-
trum : UMTS, Wi-Fi), and Ultra-Wideband Technology. Till now, PseudoNoise (PN) sequences are widely used and
implemented as spreading factor for direct sequence and as hopping pattern in frequency hopping, but also as time
pattern in pulse transmission (UWB). In the last decade, chaotic encryption for security and chaotic sequence to DSSS
systems have been reported. Due to the aperiodic nature of the chaotics signals, chaos based digital communications
schemes have been proposed to improve channel capacity compared to the conventionnal spread-spectrum system. The
last are based on PN sequence and consequently are limited, whereas an infinite number of chaotic signals with good
correlation properties can be ideally generated. Nevertheless, increasing the number of simultaneaous communication
leads to reduce the SNR ratio to each communication. As a result, it is more difficult to ensure a correct detection since
synchronization of a chaotic signal in noisy environment is the weak link of the receiver structure. Since the work of
Pecora and Carroll [1] which have demonstrated that a drive signal could be used to synchronize a chaotic system, a
number of chaotic synchronization with modulation schemes have been proposed. Typically, the response system is a
duplicate of the drive system. The synchronization error, which is the difference between the transmitted signal and
a similar reconstructed signal generated by the response system is injected through a controller in order to achieve
synchronization.

In this paper, we propose a new modulation and demodulation scheme and a design procedure of a PI controller based
on LMI approach. The modulation scheme is based on SCSK modulation : User’s data sequence is first modulated
using BPSK modulation. The transmitted signal is spreading thanks to a simple multiplication of BPSK modulated
signal and a chaotic sequence. This involves discontinuities of the chaotic transmitted signal and leads to a more
complex synchronization procedure since chaotic generator signal is modified by user’s sequence. Our approach consist
in masking SCSK signal by an other state of chaotic generator in order to simplify chaotic synchronization (bsince
synchronization procedure is based on non modulated chaotic signal) and in order to hide the SCSK signal for security
purpose.Chaos synchronization is studied by using an output feedback PI controller. A PI controller has been choosen
since such controller is relatively simple and easy to implement for pratical applications. In the recent years, several
approaches have been proposed to give efficient numerical procedures to find a stabilizating static output feedback
[2], [3]. The basic idea is to use a stabilizating static state feedback and to introduce additional variables to give an
equivalent problem involving Linear Matrix Inequality (LMI). The new concepts proposed in this paper are first a new
modulation/demodulation scheme where the synchronisation procedure is demonstrated and not assumed and second
we use dissipativity theory to formulate the problem of synchronization for a class of chatoic systems in terms of LMI
framework.

This paper is organized as follow : in section 2, we focus on the coherent MSCSK system. Section 3, we present the
control strategy. Section 4 is devoted to the controller design using LMI framework. Section 5, numerical results are
provided to illustrate the effectiveness and efficiency of the proposed control methodology.
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II. Modulation and demodulation of chaotic signals using Chua circuit : System description

Chaotic generator is based on Chua Circuit. This circuit has been widely studied ([4], [5] ...) and it consist of a linear
parallel RLC circuit and a non linearity resistive part as shown in Figure 1.

Fig. 1. Chua’s Circuit

Usually, nonlinear resistance is represented by a three segment piecewise linear function as shown in figure 2.

Fig. 2. Non Linear resistance characteristic

The inner region has slope G0, the outer regions have slopes G1. We note f: Ir → V r = f(Ir) the nonlinear function.
This circuit is completely described by a system of three differentiel equations.
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V1, V2,I3 are the vector state of Chua Circuit.
The procedure of MSCSK modulator is illustrated in figure 3. It consists in modulating R0I3 with BPSK user’s

sequence and masking the resultant signal with V1
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Fig. 3. MSCSK

The transmitted signal is xr(t) = k1V1 + k2m(t)R0I3, where m(t) is the BPSK user’s sequence, k1 and k2 are two
gains to mask the modulated signal with non modulated chaotic sequence (k1 > k2).

In the receiver, a synchronous chaotic system is coupled with a demodulator designed specifically to extract the
information signal from the synchronization error as illustrated in figure 4.
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Let y(t) be the receive signal. In the sequel, we use the subscripts T and R to assigne transmitter, respectively
the receiver signals. Assuming a noiseless channel, we have y(t) = xr(t). The synchronization system is based on a
similar transmitter circuit. Assuming that demodulation procedure is able to extract m̂ = m with a demodulation time
constant, the synchronization error is e = y − ŷ :

e = k1VR1 + k2m(t)R0IR3 − k1VT1 + k2m̂(t)R0IT3 (2)

Due to time demodulation procedure and time synchronization, we add a PI controller to stabilize the system in order
to tend e(t) assymptotycally towards 0. The estimation of PI controller is derived from LMI procedure which is defined
in section 3 and 4. To sum up, the synchronization system is composed by a feedback function (2) composed by a Chua’s
circuit, two gains, a multiplier and a sommator in order to reconstruct the received signal as close as the transmitted
signal and a PI that provides a dynamic estimate of the error. This error is injected to the Chua’s receiver circuit as
illustrated in figure 5
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Fig. 5. Synchronization

Assuming stabilization of the receiver system, the error tends exponentially to 0 when m̂ = m. Nevertheless, as m
is the user’s information, the absolute synchronization error |u| increase when a change of user’s information occurs.
The demodulation procedure is based on detecting the absolute synchronization error. The absolut eerror is injected
to the clock of a JK latch. The J and K inputs of the latch remain on high state. Consequently, when a change of
|u| occurs (clock signal), the output of the lacht change its state. But, during this delay (m̂ is not equal to m), the
synchronization system is trying to minimize synchronization error by delivering VT1 and IT3 different to VR1 and IR3

which best satisfy (2). Once m̂ = m, the error synchronization rapidly growths to decrease according to (2). In order to
not detect the new change of absolute synchronization error who leads to a change of m̂, we add a debouncing system
composed by a monostable and a RS latch, whose delay is theoritically defined according to the Lyapunov exponent of
the synchronization system.

The demodulation scheme is shown in figure 6.
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Fig. 6. demodulation

The performance of receiver system depend on the threhold detection and delay of the debouncing system. Im-
provement can be easy made when knowledge of the user rate is implemented on the receiver scheme. Indeed, a clock
regenerator will replace debouncing system to hold a potentially change of state.

III. System definition and problem formulation to assess PI parameters

Let us consider a class of chaotic systems given by







ẋ = Ax+B1ω

y = C(m)x
ω = f(x, y)

(3)

where x ∈ R
n is the state vector, y ∈ R

ny is the output vector, m(t) ∈ R is the information signal and f(x, y) ∈ R
nω

denotes the nonlinear function on the state x and the output y.
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Assumption 1: The pair (A,B2) is controllable
In this paper, we consider the problem of the synchronization of system (3) and the recovery of the information

message vector m. The master (or drive) system (3) drives the slave (or response) system having identical equations
defined as follows.







˙̂x = Ax̂+B1ω̂ +B2û

ŷ = C(m̂)x̂
ω̂ = f(x̂, y)

(4)

where u ∈ R
nu is an additional control vector. The synchronization signal y is sent to the response system. B2 is chosen

in order to keep the system within its chaotic response.

Assume that the information signal m(t) = 1 is transmitted to achieve synchronization, i.e C(m) = C Let the error
signals be e = x− x̂ and ỹ = y − ŷ. In this case

ė = Ae+B1 (ω − ω̂) −B2u (5)

Assumption 2: (f(x, y) − f(x̂, y))
⊤

(f(x, y) − f(x̂, y)) ≤ k1e
⊤C⊤Ce where k1 is a real positive number

Consider the following PI controller ([6]):

u(t) = F1ỹ + F2

∫ t

0

ỹ(τ)dτ (6)

F1, F2 ∈ R
nu×ny are matrices to be designed.

Let

z =

(

e
∫ t

0
ỹ(τ)dτ

)

the state vector of the new system, and

ω̄ = f(x, y) − f(x̂, y)

the perturbation vector.

ż = Āz + B̄1ω̄ − B̄2u (7)

The matrices Ā, B̄1 and B̄2 are defined as follows

Ā =

(

A 0
C 0

)

B̄1 =

(

B1

0

)

B̄2 =

(

B2

0

)

Let ȳ =

(

ȳ1
ȳ2

)

with:

ȳ1 =
(

C 0
)

z

ȳ2 =
(

0 I
)

z
(8)

In this case, u becomes

u =
(

F1 F2

)

ȳ = F̄ ȳ (9)

The problem of PI controller design is reduced to that of static output feedback controller design for the system:







ż = Āz + B̄1ω̄ − B̄2u

ȳ = C̄z

u = F̄ ȳ

(10)

where

C̄ =

(

C 0
0 I

)
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IV. PI controller design

In this section, the design problem of PI controller is investigated. The control objective is to stabilize non-linear
system (10).

A. Problem statement

Consider the system (10) where z takes its values in a state space Z, the output ȳ taking its values in an output state
Y, ω̄ takes its values in a perturbation space Ω and u takes its values in a control space U. Let

s : Z × Y × Ω × U → R (11)

be a mapping and assume that for all t0, t1 ∈ R and for all z, ȳ, ω̄, u satisfying the function

s(t) = s(z, ȳ, ω̄, u) (12)

is such that

∫ t1

t0

|s(t)dt| <∞ (13)

Moreover, assume that

s(z, ȳ, ω̄, u) =









z

ȳ

ω̄

u









⊤

G









z

ȳ

ω̄

u









≤ 0 (14)

In this case, G is a real symmetric definite negative matrix

G =









ā b̄ c̄ d̄

b̄⊤ α β ϕ

c̄⊤ β⊤ δ θ

d̄⊤ ϕ⊤ θ⊤ ψ









(15)

where ā, b̄, c̄, d̄, α, β, ϕ, δ, θ, ψ are matrices of appropriate dimensions. s(t) is a supply function for system (10).
Substituting the output equation ȳ = C̄z in s(z, ȳ, ω̄, u) shows that (14) can equivalently be viewed as a quadratic

function in the variables z, ω̄ and u:

s(z, ω̄, ũ) =





z

ω̄

u





⊤

Θ





z

ω̄

u



 ≤ 0 (16)

where Θ is a real symmetric definite negative matrix
Θ =
0

@

ā + C̄⊤ b̄⊤ + b̄C̄ + C̄⊤αC̄ c̄ + C̄⊤β d̄ + C̄⊤ϕ

∗ δ θ

∗ ∗ ψ

1

A

Consider the following Lyapunov function

V = z⊤Pz (17)

P is a symmetric strictly positive definite matrix. System (10) is dissipative if

V̇ − s < 0 (18)

There are several ways to choose the quadratic function s(z, ȳ, ω̄, u). The control objective is to design a static
output feedback controller such that z tends exponentially to zero as t → ∞ despite of the nonlinearity difference
f(x, y) − f(x̂, y). By considering ω̄ as a perturbation vector, the problem of design a controller for system (10) can be
solved by choosing the following supply function

s(z, ȳ, ω̄, u) = γ2ω̄⊤ω̄ − ȳ⊤ȳ (19)

where γ is a strictly positive real number. The supply function (19) can be interpreted as follows. From (8), the
inequality (16) is equivalent to

X1 +X2 ≤ 0 (20)
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where

X1 =

„

e

f − f̂

«⊤ „

−C⊤C 0
0 γ2

« „

e

f − f̂

«

X2 = −

R

t

0
e⊤(τ)C⊤Ce(τ)dτ

A sufficient condition for (20) is X1 ≤ 0. From assumption 2, this means that there exists a positive real number γ,
such that

k1 ≤
1

γ2
(21)

The smallest possible value of γ corresponds to the largest upperbound of the sector condition described in assumption
2. From (18), system (10) is dissipative if there is a symmetric positive definite matrix P such that

M =

(

A⊤

cl
P + PAcl + C̄⊤C̄ P B̄1

B̄⊤
1
P −γ2I

)

< 0 (22)

is feasible. The matrix Acl has the following definition

Acl = Ā− B̄2F̄ C̄

Theorem 1: Assuming a driving system (3), a response system (4) and a quadratic function (19). The closed loop
non linear system (10) is stable if the following conditions are satisfied:
1. The control vector u is choosen to be

u(t) = F1ỹ + F2

∫ t

0
ỹ(τ)dτ

F̄ =
(

F̄1 F̄2

)

2. Minimize γ > 0 over all variables of the following LMI’s

P = P⊤ > 0

(

PA0 +A⊤
0
P + C̄⊤C̄ P B̄1

B̄⊤
1
P −γ2I

)

< 0
(23)

where
AO = Ā− B̄2F̄0

3. With F̄0, P and γ, find F̄ solution of the following LMI








C̄⊤C̄ 0 P 0
0 −γ2I 0 0
P 0 0 0
0 0 0 0









+Sym























f1
f2
f3
0









(

A0 B̄1 −I 0
)















+Sym























f1B̄2

f2B̄2

f3B̄2

0









(

0 0 0 I
)















+Sym























0
0
0
I









(

GF̄0 − LC̄ 0 0 −G
)















< 0

where f1, f2, f3 are non null matrices and matrices G and L are such that F̄ = G−1L.
See [7] for the complete proof of theorem 1
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V. Numerical Results

In this section, to verify and demonstrate the effectiveness of the proposed method, simulation results are presented
for a communication system built using Chua’s Circuit ([8]).

The Chua’s circuit is a simple electronic circuit. Its dynamic is described by system (3), where

A =





− 18

7
9 0

1 −1 1
0 −14.286 0



 B1 =





27

14

0
0





B2 =





1

4

0
0



 C =
(

0 0 1
)

The non-linear characteristic is

f(x, y) = −
3

14
(|x1 + 1| − |x1 − 1|) (24)

This equation means that the outer regions slopes of the non linear function is G1 = 0. Notice moreover that non-
linearity of Chua’s circuit does not depend on the transmitted signal y(t)

Fig.7 presents the (x1, x2)-phase plane, that shows the chaotic nature of the system.
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Fig. 7. Chaotic behavior of the Chua’s circuit in the x1-x2 plane

Assuming that the user information is m=1, the numerical values that are obtained for the controller are F1 = 247.9,
F2 = 75.43 with γ = 0.0463.

In Fig. 8 the detected signal (represented with cross point) can not be stabilize toward a state because of a too small
time of debouncing and of a too low threshold detector.

To be optimized, our system needs to wait at least 50 ms before modifying the state of detected signal (m̂).

Adjusting the delay to 50 ms, an error at the 7th bit (70 s) is shown in figure 9. This error occurs from a bad choice
of threshold detector.

In this simulation, a noisy channel is added to empathize the role of detector threshold. The first transition of m̂ takes
place when magnitude of error is closed to 130 at time 50 s. A second transition occurs at time 60s when magnitude
of error is close to 180, whereas an error appears at time 70 s because of a two small error synchronization (whose
magnitude is 30).

Fig. 10 shows the transmitted and recovered binary signal for optimal detector parameters. The user’s information
is a random binary sequence defined at a bite rate of Tb=10s. The cross representing the received signal and the
transmitted signal is shown by the solid line. We note no error in the following binary sequence.

The dash line presents the normalize state errors between transmitter and receiver. The errors quickly tend to zero.
This means that the driving and response systems can be globally synchronized.
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Fig. 10. Comparison of transmitted and received user’s sequence
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Fig. 11. Comparison of transmitted and received user’s sequence with mismatch chua’s parameters

In Fig. 11, 10 percent of parameters mismatch of Chua circuits lead to some errors (time T= 70 s and time T= 200s)
in detection if we keep the same detection threshold . These errors occur because the magnitude of synchronization
errors increase when the drive and the slave parameters differ.

Nevertheless, by modifying the detection threshold, we can solve such errors and we retrieve same result as Fig.
10. Consequently, the system is also robust against parameters mismatch between Chua’s Circuit in emission and in
reception.

VI. Conclusion

This paper proposes a new secure communication scheme of chaotic modulation and the reception circuit is defined by
using the concept of dissipativity. For a class of chaotic systems, it is possible to design a PI controller to synchronize the
drive system. The synthesis of the PI gains is converted into a static output feedback controller synthesis. The resulting
bilinear matrix inequality can be then converted into a linear matrix inequality using a fictitious static state feedback.
This approach is different from iterative LMI algorithms. It remains the problem of how to choose the stabilizing static
state feedback among all the admissible candidates. Nevertheless, numerical simulation verifies the effectiveness of the
proposed algorithm even if the parameters between the two chua’s circuit don’t match.
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